AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOT-ETC F/6 12/1 EFFICIENT COMPUTER IMPLEMENTATIONS OF FAST FOURIER TRANSFORMS. (U) DEC 80 J D BLANKEN AFIT/GE/EE/80D-9 NL AD-A100 782 UNCLASSIFIED 1.4 1.00 TB # **DISCLAIMER NOTICE** THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. AFIT/GE/EE/80D-9 # EFFICIENT COMPUTER IMPLEMENTATIONS OF FAST FOURIER TRANSFORMS THESIS AFIT/GE/EF/80D-9 John D. Blanken Captain USAF Approved for public release; distribution unlimited EFFICIENT COMPUTER IMPLEMENTATIONS OF FAST FOURIER TRANSFORMS. Date the #### THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial Fulfillment of the Requirements for the Degree of Master of Science John D. Blanken B.S.E.E. Capt. **USAF** Graduate Electrical Engineering ee asion for NTIS GRABI DITIC TAB Approved for public release; distribution unlimited #### Acknowledgments Dr. John Himes and Mr. Harold Noffke of the Air Force Wright Aeronautical Laboratory proposed this topic. I am indebted to them for both the topic and their support. Gratitude is due Drs. Burrus and Parks of Rice University for many helpful discussions and ideas throughout this effort. They graciously provided the Prime Factor Algorithm studied and tested in this paper. A special thanks is extended to Mr. Jim Thompson of Control Data Corporation and Dr. Poirier of Aeronautical Systems Division for their invaluable assistance in quantifying the multiply and add speed on the Cyber 74. A debt of gratitude is owed to my thesis readers Capt. Larry Kizer and Dr. Kabrisky. Their willingness to let me work independently was greatly appreciated. My very deepest appreciation is extended to my faculty advisor Dr. Pedro Rustan for his patience, confidence, and skilled guidance. Most of all I appreciate his enthusiasm and hard work which motivated me to continue my efforts. Finally, I am indebted the most to my wife, Linda, for her encouragement, typing the rough draft, and allowing me to sacrifice our family life and complete my work at AFIT. John D. Blanken This thesis was typed by Niki Maxwell ### Contents | | | | | Page | |-------|---------------------------------|---|--|----------------------------------| | Ackno | owledgr | ments | | ii | | List | of Fig | gures | | vii | | List | of Tal | oles | • | × | | Gloss | sary of | f Terms | • | хi | | Abst | ract | • • • • • • | • | хii | | I. | Introduction | | | 1 | | | 1.1
1.2
1.3
1.4
1.5 | Problem Scope. Assumption | ound n tions ch and Presentation | 1
2
2
3
5 | | II. | Litera | ature Re | eview | 7 | | III. | FFT T | neory | • | 12 | | | 3.1
3.2 | | ing Trigonometric Function Values. Radix Algorithms | 13
14 | | | | 3.2.1
3.2.2
3.2.3
3.2.4
3.2.5 | Development of Radix-2 Theory Development of Radix-3 Theory Radix-5 Theory Digit Reversal Algorithm Development of a Radix-3 FFT Based on the Cube Root of Unity Summary | 14
26
40
41
45
51 | | | 3.3 | _ | perations Count for Fixed Radix | 51 | | | | 3.3.1
3.3.2 | Number of Butterflies in Fixed Radix-p FFTs | 52 | | | | 3.3.3 | Fixed Radix-p FFTs Number of Trigonometric Functions Required for the Fixed Radix | 53 | | | | 3.3.4 | Algorithms | 53
56 | | | | 3.3.5 | Real Operations Count for the Radix-3 FFT Using the Complex | | | | | 3.3.6 | Cube Root of Unity Memory Requirements for Fixed | 58 | | | | | Padiv Prme | 61 | ## Contents | | | | • | Page | |-----|-------|----------------|--|------------| | | 3.4 | Mixed | Radix FFT Algorithms | 63 | | | | 3.4.1 | Mixed Radix Theory Digit Reversal Algorithm | 65 | | | | | (General) | 70 | | | | 3.4.3 | Twiddle Factors | 72 | | | | 3.4.4 | Real Operations Count for Computing
Sine and Cosine Difference Equation | | | | | 3.4.5 | Real Operations Count for Mixed. | 78 | | | | 3.4.6 | Memory Requirements for Mixed | 70 | | | | | Radix FFTs | 99 | | | 3.5 | | Transforms Using Fast Convolution | | | | | Algori | thms | 109 | | | | 3.5.1 | Converting a DFT to Circular | | | | | 2 = 2 | Convolution | 110
112 | | | | 3.5.2 | Reordering the Data Arrays | | | | | 3.5.3 | The Winograd Fourier Transform | 113
118 | | | | 3.5.4 | The Prime Factor Algorithm Theory. | 122 | | | | 3.5.5
3.5.6 | Real Operations for WFTA | | | | | 3.5.7 | Memory Requirements for WFTA | | | | | | Real Operations for the PFA | 137 | | | | 3.5.8
3.5.9 | Memory Requirements for PFA Summary | 144 | | | | | - | | | IV. | | | esults of Efficient Discrete Fourier | | | | Trans | forms | • | 145 | | | 4.1 | | uction | 145 | | | 4.2 | | tional Radix-3 vs R(u) Field | 1 4 7 | | | | | 3 | 147 | | | 4.3 | | Radix vs Mixed Radix FFTs | 147 | | | 4.4 | | Radix FFT Comparison: IMSL vs | 150 | | | 4.5 | Singre | tontional vs Fast Convolution Mixed | 130 | | | 4.5 | | FFTs | 158 | | | | | | | | | | 4.5.1 | Real Operations Count | 159 | | | | 4.5.2 | Memory | 171 | | | | 4.5.3 | WFTA vs PFA Operations Count | 173 | | | 4.6 | | ility of the DFT Algorithms | 174 | | | 4.7 | | orithm to Select the Most Efficient | 170 | | | | DFT Te | chnique | 178 | | | | 4.7.1 | Arguments | 178 | | | | 4.7.2 | Usage | 179 | ### Contents | Pag | ge | |--|----------| | V. Conclusions | 85 | | | 85
88 | | Bibliography | 90 | | Appendix A: Radix-2 FFT Algorithm | 93 | | Appendix B: Radix-3 FFT Algorithm | 95 | | Appendix C: Radix-3 FFT in R(u) | 01 | | Appendix D: Radix-5 FFT Algorithm 20 | 08 | | Appendix E: Mixed Radix FFT Algorithm 22 | 22 | | Appendix F: Singleton's Mixed Radix FFT 24 | 42 | | Appendix G: IMSL Mixed Radix FFT 25 | 58 | | Appendix H: An Algorithm for Computing the WFTA 26 | 54 | | Appendix I: Computing the Prime Factor Algorithm (PFA) | 36 | | Appendix J: Timing Tests on the CDC Cyber 74 29 | 18 | ### List of Figures | Figure | | Page | |--------|---|------| | 3.1 | Flowgraph of the Decimation-In-Time Decomposition of an N-Point DFT Computation into Two N/2-Point DFT Computations (N=8) | 16 | | 3.2 | Flowgraph of the Decimation-In-Time Decomposition of an N/2-Point DFT Computation into Two N/4-Point DFT Computations (N=8) | 19 | | 3.3 | Result of Substituting Figure 3.2 into Figure 3.1 | 20 | | 3.4 | Flowgraph of Two-Point DFT | 22 | | 3.5 | Flowgraph of Complete Decimation-In-Time Decomposition of an 8-Point DFT | 23 | | 3.6 | Flowgraph of Basic Butterfly Composition | 25 | | 3.7 | Flowgraph of Simplified Butterfly Composition | 27 | | 3.8 | Flowgraph of 8-Point DFT Using the "Twiddle Factor" Butterfly of Figure 3.7 | 28 | | 3.9 | Butterfly Flowgraph for First Stage Decimation (N=9) | 31 | | 3.10 | Butterfly Flowgraph for F(k) | 33 | | 3.11 | Complete Butterfly Flowgraph (N=9) | 34 | | 3.12 | General Radix-3 Butterfly Flowgraph | 38 | | 3.13 | Basic Twiddle Factor Radix-3 Butterfly | 39 | | 3.14 | Radix-5 Twiddle Factor Butterfly | 42 | | 3.15 | Digit Reversed Input and Output Arrays | 44 | | 3.16 | Radix-3 Butterfly in R(u) Arithmetic | 49 | | 3.17 | First Decomposition N=30 | 67 | | 3.18 | Butterfly Flowgraph for N=30 | 68 | | 3.19 | Radix-4 Butterfly Flowgraph Showing the 4 Twiddle Factor Multipliers | 75 | ### List of Figures | Figure | | Page | |--------|---|----------| | 3.20 | Radix-2 Section of Singleton's FFT | 84 | | 3.21 | Radix-3 Section of Singleton's FFT | 85 | | 3.22 | Radix-4 Section of Singleton's FFT | 87 | | 3.23 | Radix-5 Section of Singleton's FFT | 89 | | 3.24 | General Factor Section of Singleton's FFT | 91 | | 3.25 | Multiplications vs N for Singleton's FFT (N<200) | 97 | | 3.26 | Additions vs N for Singleton's FFT ($N\leq 200$) | 98 | | 3.27 | Multiplications vs N for Multiples of 2,3,4, and 5 | 100 | | 3.28 | Additions vs N for Multiples of $2,3,4$ and 5 . | 101 | | 3.29 | Memory Array vs N (≤200) for Singleton's FFT | 107 | | 3.30 | Memory Array vs N (\leq 200) for IMSL's FFT | 108 | | 3.31 | Flow Control in WFTA Program | 124 | | 3.32 | Real Multiplications for WFTA | 131 | | 3.33 | Real Additions for WFTA | 132 | | 3.34 | Memory Comparison Between Modified and Original WFTA | 133 | | 3.35 | Real Multiplications for the PFA | 140 | | 3.36 | Real Additions for the PFA | 141 | | 3.37 | Percentage Savings of Multiplications by Using Shifts in PFA | 142 | | 3.38 | Memory Array Required by PFA | 143 | | 4.1 | Fourier Transform of e ^{-t} cos 50 mt | 146 | | 4.2 | Memory Array Saved Using Singleton's Instead of IMSL's FFT | 155 | | 4.3 | Real Multiplication Comparison for PFA, WFTA and MFFT (N<500) | ,
160 | ## List of Figures | ligure | | Page | |--------|---|------| | 4.4 | Real Addition Comparison for PFA, WFTA, and MFFT (<500) | 162 | | 4.5 | Predicted Times of Execution as a Percentage of Measured Time for the MFFT, WFTA, and PFA | 170 | | 4.6 | Memory Arrays Required by MFFT, WFTA, and PFA | 172 | | 4.7 | Relative Efficiencies of MFFT, WFTA, and PFA | 175 | | 4.8 | Flowchart to Select Most Efficient | 180 | ## List of Tables | Table | | Page | |-------|---|------| | 3.1 | Real Operations Count for Radix-2,3 and 5 | 59 | | 3.2 | Comparison Between Complex and
R(u) Radix-3 FFT For Real Operations | 62 | | 3.3 | Fixed Radix Memory Required | 64 | | 3.4 | Results of Counters in Singleton's FFT | 79 | | 3.5 | Operations Executed for Each Counter | 81 | | 3.6 | Small-N Operations Count for WFTA | 119 | | 3.7 | PFA Small-N DFT Operations Count | 121 | | 3.8 | McClellan and Nawab's WFTA Real Operations for the Small-N Algorithms | 128 | | 3.9 | Real Operations and Memory for McClellan and Nawab WFTA | 129 | | 3.10 | PFA Small-N DFT Operations Count for No Shifts | 136 | | 3.11 | PFA Real Operations and Memory Count for N≤72 | 138 | | 4.1 | Radix-3 Timing Comparison | 148 | | 4.2 | Fixed Radix (FR) vs Mixed Radix (MR) FFTs | 149 | | 4.3 | Program Memory Required by FFTs | 151 | | 4.4 | Timing Results for IMSL and Singleton FFTs | 154 | | 4.5 | Operations and Memory Array Comparison for MFFT, WFTA, and PFA | 164 | | 4.6 | Timing Results from the WFTA Subroutines | 167 | | 4.7 | Measured and Predicted Timing Results for MFFT, WFTA, and PFA | 168 | | 5.1 | Comparison of DFT Algorithms | 189 | ### Glossary of Terms - Butterfly: The DFT computation of Figure 3.4 provides the notation whose appearance is that of a "butterfly". - 2. Fixed Radix: The term "radix" is commonly used to describe a specific FFT decomposition. The term "fixed" radix means that all the factors of N are the same. - 3. Mixed Radix: All the factors of N are not identical. - 4. Relatively Prime: The numbers in a given set are said to be relatively prime when no number in the set is divisible (with no remainder) by any other number in the set. Example, (2, 3, 7, 9) are not relatively prime sets because 9 is divisible (with no remainder) by 3. The following example is relatively prime: (2, 3, 5, 7). - 5. Square and Square-free Factors: For the case where N = 4 · 3 · 7 · 4, the "4s" are square factors and the 3 and 7 are square-free. - 6. Twiddle Factors: The term refers to the complex multipliers of Figure 3.8 which pre-multiply the FFT butterflies. They are sometimes called phase or rotation factors. #### Abstract A comprehensive comparison of the most efficient Discrete Fourier Transform (DFT) techniques is presented. The DFT algorithms selected are the fixed radix Fast Fourier Transform (FFT), mixed radix FFT, the Winograd Fourier Transform Algorithm (WFTA), and the Prime Factor Algorithm (PFA). Comparison of the algorithms is based on the number of real multiplications, additions, and memory arrays required as a function of sequence length N. This paper reviews the literature, selects the most efficient DFT FORTRAN programs available, develops the number of real multiplications and additions as a function of N, and compares the algorithms using tables and plots of real multiplications, additions, and memory arrays. This comparison shows that the WFTA and PFA require the least real multiplications and additions, but the fixed radix and mixed radix FFTs require the least memory. The mixed radix FFT is much more flexible than WFTA or PFA since N can be any length sequence. The WFTA and PFA are closely studied and tradeoffs between the two are discussed. PFA uses less additions but more multiplications for most sequence lengths which means the WFTA is more efficient when multiplications are "costly" relative to additions. The PFA uses less memory than the WFTA making the PFA prefcrable when the machine memory is limited. Based on the results of the paper, an algorithm is presented to select the most efficient DFT for an N length sequence given the multiply speed, add speed, and memory size of the computer. #### I. Introduction #### 1.1 Background Computing the Discrete Fourier Transform (DFT) of N points has many applications in scientific and engineering calculations. In 1965 Cooley and Tukey described an algorithm which became known as the Fast Fourier Transform (FFT) because it reduced the number of complex operations required to compute the DFT from N² to N log₂ N where N=2^m, m an integer. Using ideas proposed in the Cooley-Tukey paper a mixed radix algorithm was written and published in 1969 by Singleton which permitted N to be any positive integer length sequence. In 1976 Winograd proposed a mixed radix DFT algorithm which (1) converted the DFT to circular convolution, (2) used fast convolution algorithms to perform "short-DFTs", and (3) nested these short-DFTs into a structure to perform long Fourier transforms on complex data sequences. This algorithm became known as the Winograd Fourier Transform Algorithm (WFTA). The WFTA maintained the real additions count at the FFT levels while significantly reducing the real multiplications required. Kolba and Parks, 1977, used Winograd's fast convolution algorithms and proposed a new Prime Factor Algorithm (PFA). This new algorithm modified the short-DFTs to use "shifts" instead of multiplication by 1/2 and did not use the nested structure of WFTA. As a consequence the PFA uses more real multiplications and less additions relative to the WFTA for a given length sequence N. #### 1.2 Problem Both Winograd, 1976, and Kolba-Parks, 1977, compared their operations count to that of the FFT but did not include all possible WFTA and PFA sequence lengths. Further, no comparisons were made on the basis of memory arrays required by each algorithm as a function of N. This paper presents a comprehensive comparison of fixed radix FFTs, mixed radix FFTs, WFTA, and PFA based on real operations and memory arrays. This comparison provides the information needed to select the most efficient algorithm to perform the DFT based on machine size, machine speed, and real operations. #### 1.3 Scope This paper reviews the literature, selects DFT algorithms for comparison, studies the theory of each algorithm selected, develops the real operation and memory count as a function of N, compares these algorithms using tables and plots of operation and memory counts, and presents an algorithm to select the most efficient techniques. The DFT algorithms selected for study and comparison are: - (1) Radix-2 FFT - (2) Radix-3 FFT - (3) Radix-3 FFT in the R(u) field - (4) Radix-5 FFT - (5) Mixed radix FFT written by the author - (6) Mixed radix FFT written by Singleton - (7) Mixed radix FFT available from International Mathematical Subroutine Library (IMSL) on the CDC Cyber 74 - (8) WFTA - (9) PFA. Each of these algorithms has a particular advantage which makes selection of the best algorithm dependent on the machine size, machine speed, and sequence length. #### 1.4 Assumptions To a first approximation, the speed of an FFT algorithm is proportional to the number of complex multiplications used. The number of times the data array is indexed is, however, an important secondary factor (Singleton, 1969). Kolba and Parks, 1977, substantiated this assumption by timing the PFA and FFTs on an IBM 370/155 for several sequence lengths and showing that the FORTRAN coded PFA (having less real additions and multiplications) was faster than the FFT FORTRAN algorithms. In 1978 Morris demonstrated that the sequence of arithmetic operations in a DFT algorithm's internal structure can result in different execution times "between ostensibly equivalent algorithms on a given machine" and that the computer dependent algorithm/architecture interactions may also alter relative performance of the different algorithms. He modified the FORTRAN coded radix-4 FFT and WFTA programs and matched them to the PDP 11/55 and IBM 370/168 architecture and showed that the WFTA offered neither time or space advantages over the radix-4 FFT. Morris achieved these results because "the radix-4 FFT appears almost ideally matched to the PDP-11 architecture" whereas the WFTA "has extra load/store burdens" and requires extra data array indexing. Morris demonstrated that it may be possible to optimize DFT algorithms to match a certain machine, however, this type of optimization of the FORTRAN DFT algorithms is outside the scope of this paper. It is assumed that existing FORTRAN coded DFT algorithms will not be modified and selecting an algorithm which minimizes real operations produces the most efficient algorithm. This paper derives and tabulates real operations counts as a function of N for the algorithms listed in Section 1.3. The most efficient DFT algorithms are timed on the CDC Cyber 74 computer and compared to the predicted execution time based on real operations. These predicted times are shown to be consistent with the timing results. #### 1.5 Approach and Presentation A literature review is presented in Chapter II which starts with the 1965 Cooley-Tukey paper and follows the various DFT algorithm developments up through Kolba-Parks' 1977 article. The review puts Rader's 1968 landmark paper in perspective with Winograd's "nested" DFT algorithm and the subsequent work by Kolba and Parks. Next, the theory behind the DFT algorithms is reviewed, the real operations count developed, and the memory array count needed for a sequence length N is determined. The general expressions for real operations and memory array counts are developed from published articles or from the background theory and then plotted and tabulated as a function of N. The readers familiar with the FFT and Winograd background theory may wish to skip Sections 3.1 and 3.2. In Chapter IV comparison tables and plots of the DFT algorithms make it possible to select the most efficient algorithm based on real operations and memory array required. Timing results from the CDC Cyber 74 system for representative sequence lengths are tabulated to substantiate the assumption that minimizing real operations equates to maximizing efficiency. An algorithm is also presented at the end of Chapter IV which uses the tables in this paper to select the most efficient DFT technique given the sequence length, memory size, and computer add and multiply speed. Conclusions and recommendations are presented in Chapter V. #### II. LITERATURE REVIEW The calculation of the Discrete Fourier Transform
(DFT) is a central operation performed in digital signal processing but was not widely used for other than trivial sequence lengths because of the cumbersome DFT evaluation: $$X(k) = \sum_{n=0}^{N-1} x(n) \exp(-j2\pi nk/N)$$ (2.1) which required on the order of N² compley operations. In 1965 Cooley and Tukey published "An Algorithm for the Machine Calculation of Complex Fourier Series" which stimulated the widespread use of an algorithm which became known as the "Fast Fourier Transform" (FFT). Their paper proposed an efficient method of computing the DFT by factoring an N length sequence into its prime components: $$N = n_1 n_2 \dots n_m$$ (2.2) and then decomposing Eq (2.1) into m steps with N/n_i transformations within each step. If $n_1=n_2=\ldots n_m=2$, the operations are reduced to the N \log_2 N level from the previous N^2 level. Most of the early work on the FFT (Bergland, 1968) was directed toward the special cases where N=2^m which yielded simple and efficient algorithms. These algorithms are efficient because no multiplications are needed to evaluate the 2-point DFT butterflies which can reduce the operations count below the N log₂ N level. Other "fixed radix" algorithms were studied and Dubois and Venetsanopoulos published "A New Radix-3 Algorithm" in 1978 which demonstrated that a radix-3 butterfly could be computed without multiplications by defining a new basis (1,u) instead of using the complex plane (1,i) basis, where u is the complex cube root of unity. This technique was later shown to be limited to the special cases of 3^m and 6^m (Burrus and Parks, 1979). Based on Cooley and Tukey's paper "mixed-radix" algorithms were written by Brenner and Singleton. The most efficient and popular of these algorithms was "An Algorithm For Computing the Mixed Radix Fast Fourier Transform" published in 1969 by Singleton and is frequently used in digital signal processing where a wider choice of N is needed. The Singleton algorithm can perform the DFT using FFT techniques of any length sequence N but becomes most efficient when N is highly composite from the set of integers 2, 3, 4, and 5. If N is a prime number the algorithm performs a DFT using N² operations. The Singleton algorithm became the standard against which all future DFT techniques were measured. In 1968 Rader presented "DFTs when the Number of Data Samples Is Prime" which showed that a prime number length sequence contains an (N-1) point circular convolution. He showed how to isolate the convolution by applying a permutation to the (N-1) signal points x(1), x(2), ..., x(N-1). He also gave the permutation applied to the complex THE PARTY OF THE multipliers from the set [exp(-j2\pink/N),k=1,2, ..., N-1]. Both of the permutations were generated by using a "primitive" root which exists for N length prime sequences (McClellan and Rader, 1979). Rader's paper was largely overlooked for many years but took on new significance when Winograd presented his new DFT algorithm "On Computing the Discrete Fourier Transform" in 1976. Winograd combined Rader's idea of converting a DFT to circular convolution with his own fast convolution algorithms to produce a new DFT method called the "Winograd Fourier Transform Algorithm" (WFTA). Winograd provided the fast convolution algorithms for short prime and prime power length sequences and proposed that longer transforms be computed by "nesting" the short-high speed transforms. He presented a table comparing the WFTA to the radix-2 FFT operations and showed that the number of additions remained at the FFT levels while the number of multiplications was significantly reduced. Winograd's fast convolution algorithms to permit "shifts" instead of multiplications by 1/2. They also changed the nested structure of the WFTA in favor of a conventional FFT decomposition. The decomposition of the sequence was based on an algorithm proposed by Thomas, 1963, in his article "Using a Computer to Solve Problems in Physics" which uses an index mapping based on the Chinese Remainder Theorem. Kolba and Parks selected several N length sequences and compared their operations count to WFTA and FFT. Paralleling Winograd's fast convolution work are the studies into number theoretic transforms (NTTs) which have been proposed for digital cyclic convolution and digital filtering. The NTTs were first published by Pollard, 1971, in "The Fast Fourier Transform in the Finite Field". He showed that an analogous transform to the DFT exists in the finite (or Galois) field where $\exp(j2\pi nk/N)$ terms are replaced by r^{nk} in the DFT expression such that: $$X(k) = \sum_{n=0}^{N-1} x(n) r^{nk}$$ (2.3) Notice that Pollard chose the alternative definition of the DFT where the exponent of e is positive. The r term is defined in the Galois field (GF) such that the same cyclic convolution properties exist in GF and in the complex field for the DFT. He then proved that this analogous DFT could apply prime factor decomposition to the N length sequence and perform N/n_i transformations to reduce the operations in GF to the N \log_2 N level which provided the FFT in GF. Pollard proposed that this technique be applied to cyclic convolutions in GF, multiplication of polynomials over $GF(p^n)$, aperiodic convolution of integer sequences, multiplication of very large integers, division of polynomials over GF(p), and a chirp-Z-transform for NTTs (McClellan and Rader, 1979). Pollard's paper stimulated more study of the NTTs. Reed and Truong's 1975 paper, "The Use of Finite Fields to Compute Convolutions", includes complex valued NTTs. It was shown that this NTT over $GF(q^2)$ can reduce convolution operations to the FFT levels. If q is sufficiently large the NTT can be used over $GF(q^2)$ to transform a sequence of complex integers x(n) into X(k) on $GF(q^2)$ for which the inverse transform of X(k) on $GF(q^2)$ is precisely the original sequence x(n). Using these ideas filtering or convolutions without roundoff errors can be obtained on a sequence of complex integers. Most applications of the NTTs have been in the areas of digital filtering and convolution. The author was not able to find any NTT algorithm which could be compared to the FFT, WFTA, or PFA and perform all the same functions as these three algorithms. PFA, WFTA, and FFT represent the most efficient and flexible FORTRAN programs available to perform the DFT. Each algorithm has its own particular advantage over the other two depending on machine size and speed for a particular sequence length. None of the articles reviewed presents a comprehensive evaluation or comparison of the three algorithms based on real operations and memory arrays required to perform a DFT for any sequence length N. This paper fills that need so that an efficient algorithm can be selected. #### III. FFT Theory The set of algorithms known as the Fast Fourier Transforms (FFT) use a variety of methods to reduce the computation time required to evaluate the Discrete Fourier Transform (DFT). The DFT is the central part in most spectrum analysis problems and the FFT can improve performance by a factor of 100 or more over direct evaluation of the DFT (Rabiner and Gold, 1975). Therefore, the FFT is crucially important to the digital signal processing techniques. This section begins with "fixed radix" FFT algorithms by discussing a "decimation-in-time" algorithm, the data reordering (bit reversal) theory, the real operations (addition and multiplication) count, a new fixed radix algorithm in the finite field, and then summarizes the memory required to use the fixed radix algorithms. Next the conventional "mixed" radix algorithms are presented by discussing the theory, digit reversal, real operations count, and memory required to utilize the mixed radix algorithms. This theory chapter concludes with a discussion of mixed radix algorithms based on fast convolution. The theory, data reordering, real operations count and memory are also presented for these algorithms. Before discussing the FFT algorithms comments must be made relative to computing the trigonometric function values needed to evaluate the FFT. ### 3.1 Computing Trigonometric Function Values The trigonometric values used in FFTs can be represented as values on the unit circle. The values are based on integer powers of $$\exp(-j2\pi/N)$$ which can be computed using sine and cosine functions. It is useful to have accurate methods of generating the sine and cosine terms other than the method of repeated use of library sine and cosine functions. The method most widely used in FFT algorithms (Singleton, 1967) generates the trigonometric functions by a difference equation given by: $$cos ((k+1)a)$$ = $(C \cdot cos(ka) - S \cdot sin (ka)) + cos(ka)$ $sin ((k+1)a)$ = $(C \cdot sin(ka) + S \cdot cos(ka)) + sin(ka)$ where $$C = -2 \sin^2 (a/2)$$ $S = \sin(a)$ $\cos (0) = 1$ $\sin (0) = 0$ This technique is used for all FFTs presented in this paper (except noted otherwise) because it minimizes using FORTRAN library subroutines cos (·) and sin (·) thereby reducing the overall FFT computation time. #### 3.2 Fixed Radix Algorithms While FFT algorithms are well known and widely used, they are relatively intricate and somewhat difficult to grasp at first reading. There are two excellent textbooks (Rabiner and Gold, 1975; Oppenheim and Schafer, 1975) which discuss the FFT theory in great detail and present FFTs based on decimation—in—time and frequency. Both texts spend a great deal of time discussing the radix—2 FFT, which is the most widely known and used. For this reason, the radix—2 development is presented here as a convenience for the reader and provides a theoretical background from which the other fixed radix algorithms are derived. 3.2.1 <u>Development of Radix-2 Theory</u>. To achieve the reduction in complex operations (defined as four real multiplications and two real additions) from N² to N \log_2 N it is necessary to decompose the DFT computation into smaller and
smaller DFT computations. As a result, the symmetry and periodicity of the complex exponential nk $\exp(-j2\pi nk/N) = W_N$ can be exploited. This radix-2 algorithm is based on decomposition of the sequence x(n) from the DFT expression: $$X(k) = \sum_{n=0}^{N-1} x(n) \exp(-j2\pi nk/N)$$ (3.1) $k = 0, 1, ..., N-1 \text{ and } N=2^{m}$ which is known as a "decimation-in-time" algorithm (Oppenheim and Schafer, 1975). Since N is an even integer, X(k) can be computed by separating x(n) into two N/2 length sequences consisting of even-numbered points and the odd-numbered points in x(n). Using n=2r for n even and n=2r+1 for n odd Eq (3.1) becomes: $$X(k) = \sum_{r=0}^{T} x(2r)W_N + \sum_{r=0}^{T} x(2r+1)W_N$$ (3.2) $$X(k) = \sum_{r=0}^{T} x(2r) (W_N) + W_N \sum_{r=0}^{T} x(2r+1) (W_N)$$ (3.3) But $W_N = \exp(-j4\pi/N) = \exp(-j2\pi/(N/2)) = W_{N/2}$ and Eq (3.3) can be written as: $$X(k) = \sum_{r=0}^{T} x(2r) W_{N/2} + W_{N} \sum_{r=0}^{T} x(2r+1) W_{N/2}$$ $$= G(k) + W_{N} H(k)$$ (3.4) Each of the sums in Eq (3.4) is an N/2 point DFT, the first sum being the even numbered points of the original sequence and the second sum being the odd numbered points of the original sequence. Although the index k = 0, 1, ..., N-1, each of the sums in Eq (3.4) need only be computed over k = 0, 1, ..., (N/2)-1, since G(k) and H(k) are periodic in k with period N/2. After the two DFTs in Eq (3.4) are computed, they are then combined to yield the N-point DFT, X(k). Figure 3.1 indicates the computation involved in computing X(k) according to Eq (3.4) for an eight-point Figure 3.1. Flowgraph of the Decimation-In-Time Decomposition of an N-Point DFT Computation into Two N/2-Point DFT Computations (N-8). NOTE: The integers on the branches of the flowgraph represent the powers of W_N ; i.e., the "4" represents W_N^4 . sequence. Figure 3.1 (Oppenheim and Schafer, 1975) uses the signal flow conventions such that branches entering a node are summed to produce the node variable. When no coefficient is shown the branch transmittance is assumed to be one. For other branches the transmittance of a branch is an integer power of W_N . Note in Figure 3.1 that two four-point DFTs are computed using G(k) and H(k). X(0) is obtained by multiplying H(0) by W_N^0 and adding the product to G(0). X(1) is obtained by multiplying H(1) by W_N^1 and adding the result to G(1). For X(4) it would follow that H(4) is multiplied by W_N^4 and added to G(4), however, since G(k) and G(4) = G(0). Thus X(4) results from multiplying H(0) by W_N^4 and adding the produce to G(0). With the computation of the N-point DFT of Eq (3.4) that number of computations can be compared with the direct DFT computation of Eq (3.1). For the direct computation without using symmetry properties N^2 complex multiplications were required. Eq (3.4) requires computation of two N/2-point DFTs, which require $2(N/2)^2$ complex multiplications and about $2(N/2)^2$ complex additions (Oppenheim and Schafer, 1975). The two N/2-point DFTs must be combined, requiring N complex multiplications corresponding to multiplying the second sum by W_N^k and then N complex additions, corresponding to adding the product to the first sum. As a result, the computation of Eq (3.4) for all values of k requires $N + 2(N/2)^2$ or $N + (N^2/2)$ complex multiplications and additions. For N > 2, $N + N^2/2$ is less than N^2 . The expression in Eq (3.4) corresponds to decimating the original N-point sequence into odd and even N/2-point sequences. Since $N=2^m$ the N/2-point sequences are also even and then each G(k) and H(k) can be further decimated into two N/4-point DFTs, which could then be combined to yield the N/2-point DFTs. Decimating the N/2-point sequences in Eq (3.4) into N/4-point sequences gives: $$G(k) = \begin{cases} (N/2) - 1 & rk \\ \Sigma & g(r)W_{N/2} \\ r = 0 \end{cases}$$ $$= \begin{cases} (N/4) - 1 & 2pk & (N/4) - 1 & (2p+1)k \\ \Sigma & g(2p)W_{N/2} + \sum_{p=0} g(2p+1)W_{N/2} \end{cases}$$ Letting R = (N/4)-1, $$G(k) = \sum_{p=0}^{R} g(2p)W_{N/4}^{pk} + W_{N/2}^{p} \sum_{p=0}^{\Sigma} g(2p+1)W_{N/4}^{pk}$$ (3.5) Similarly, $$H(k) = \sum_{p=0}^{R} h(2p) W_{N/4}^{pk} + W_{N/2} \sum_{p=0}^{\Sigma} h(2p+1) W_{N/4}^{pk}$$ (3.6) If the four-point DFT in Figure 3.1 are computed using Eq (3.5) and (3.6) then that computation would be carried out as indicated in Figure 3.2. Inserting the computation in Figure 3.2 into the flowgraph of Figure 3.1 produces the complete flowgraph in Figure 3.3. Note that $W_{\rm N/2} = W_{\rm N}^2$ was used. Figure 3.2. Flowgraph of the Decimation-In-Time Decomposition of an N/2-Point DFT Computation into Two N/4-Point DFT Computations (N=8). Result of Substituting Figure 3.2 into Figure 3.1. Figure 3.3. For the 8-point DFT that has been used as an example, the computation has been reduced to a computation of N/4-point DFTs where N/4=2. An example, 2-point DFT for x(0) and x(4) is shown in Figure 3.4. The complete flowgraph for the computation of the 8-point DFT is shown in Figure 3.5 and was obtained with the computation of Figure 3.4 and inserting it in Figure 3.3. Considering the more general case with N a power of 2 greater than 3 the same decimation procedure would be continued by decomposing the N/4-point transforms in Eqs (3.5) and (3.6) into N/8-point transforms. This requires v stages of computation where $v = log_2 N$. Recall that in the original decomposition of the N-point transform into two N/2-point transforms, the number of complex multiplications and additions required was $N + 2(N/2)^2$. When the N/2-point transforms were decomposed into N/4point transforms the factor of $(N/2)^2$ is replaced by $N/2 + 2(N/4)^2$ so that the overall computation now requires $N + N + 4(N/4)^2$ complex multiplications and additions. If $N=2^V$ this can be done at most $v = \log_2 N$ times, "so that after carrying out this decomposition as many times as possible the number of complex multiplications and additions is equal to N log, N" (Oppenheim and Schafer, 1975). The flowgraph of Figure 3.5 displays the operations explicitly. By counting branches with transmittances of the form $W_N^{\bf r}$ it is seen that each stage has N complex Figure 3.4. Flowgraph of Two-Point DFT. Flowgraph of Complete Decimation-In-Time Decomposition of an 8-Point DFT. Figure 3.5. multiplications and N complex additions. Since there are \log_2 N stages there are a total of N \log_2 N complex multiplications and additions as shown before. Further reductions in the complex operations count can be achieved by exploiting the symmetry and periodicity of W_N^r . Note that on each "stage" of Figure 3.5 the computation takes a set of N complex numbers and transforms them into another set of N complex numbers. This process is repeated $v=\log_{1}N$ times resulting in the DFT computation. For example, in computing the first stage of Figure 3.5 one set of storage registers would contain the input data sequence and a second set of storage registers would contain the computed results for the first stage. The sequence of numbers resulting from the mth stage of computation is denoted as $X_{m}(i)$, where i = 0, 1, ..., N-1 and m = 1, 2, ..., v. the following stage, the previous output array, $\mathbf{X}_{\mathbf{m}}(\mathbf{i})$, becomes the input array and the new output array is $\mathbf{X}_{m+1}(\mathbf{i})$ for the (m+1) stage of computation. Using this notation, it can be seen that the basic flowgraph in Figure 3.5 is given by Figure 3.6. Using the notation of Figure 3.6 the equations of the butterfly are given by: $$X_{m+1}(p) = X_m(p) + W_N X_m (q)$$ (3.7) $$X_{m+1}(q) = X_m(p) + W_n - X_m(q)$$ (3.8) Because of the appearance of Figure 3.6 the computation of Eqs (3.7) and (3.8) are referred to as the "butterfly" computations. Figure 3.6. Flowgraph of Basic Butterfly Computation. The number of complex multiplications can be reduced by a factor of 2 using the symmetry: $$W_N = \exp(-j(2\pi/N) \cdot N/2) = \exp(-j\pi) = -1$$ (3.9) so that the Eq (3.7) becomes: $$X_{m+1}(p) = X_m(p) + W_N X_m (q)$$ (3.10) $$X_{m+1}(q) = X_m(p) - W_N X_m (q)$$ (3.11) Eqs (3.10) and (3.11) are shown in Figure 3.7 which reflects the "twiddle factor" W_N^r out front in the butterfly. Since there are N/2 "butterflies" of the form of Figure 3.7 per stage and \log_2 N stages, the total number of complex multiplications required is (N/2) \log_2 N instead of the N \log_2 N used in Figure 3.5. Using the "twiddle factor" butterfly flowgraph of Figure 3.6 as a replacement for the butterfly of Figure 3.4, the Figure 3.8 is obtained. 3.2.2 <u>Development of Radix-3 FFT Theory.</u> Starting with the restriction that the N-point sequence be an integer power of three $(N=3^m,\ m=1,\ 2,\ 3,\ \ldots)$, the DFT X(k) was computed by separating the discrete time sequence s(n) into three N/3 point sequences. X(k) is given by the DFT expression: $$X(k) = \begin{cases} N-1 & \text{nk} & \text{where } k = 0,1, ..., N-1 \\ \Sigma & x(n)W_N & \text{and } W_N = \exp(-j2\pi/N) \end{cases}$$ (3.12) Breaking x(n) into three N/3 point sequences yields x(3r), x(3r+1) and x(3r+2). Substituting these into Eq (3.12) and adjusting the respective summations to (N/3)-1 yields: Figure 3.7. Flowgraph of Simplified Butterfly Computation. Flowgraph of 8-Point DFT Using the "Twiddle Factor" Butterfly of Figure 3.7. Figure 3.8. $$X(k) = \sum_{r=0}^{P} x(3r)W_{N} + \sum_{r=0}^{P} x(3r+1)W_{N} + \sum_{r=0}^{P} x(3r+1)W_{N}$$ $$+ \sum_{r=0}^{P} x(3r+2)W_{N}$$ $$+ \sum_{r=0}^{P} x(3r+2)W_{N}$$ $$+ \sum_{r=0}^{Q} By regrouping the exponents of $\mathbf{W}_{\mathbf{N}}$ Eq (3.13) can be rewritten as: $$X(k) = \sum_{r=0}^{P} x(3r)W_{N} + W_{N} \sum_{r=0}^{\Sigma} x(3r+1)W_{N}$$ $$2k \quad P \quad 3rk \\ + W_{N} \quad \sum_{r=0}^{\Sigma} x(3r+2)W_{N}$$ (3.14) By rewriting W_N^3 as: $$W_N^3 = \exp(-j6\pi/N) = \exp(-j2\pi/(N/3)) = W_{N/3}$$ (3.15) Eq (3.14) can be expressed as: $$X(k) = \sum_{r=0}^{P} x(3r)W_{N/3}^{r} + W_{N} \sum_{r=0}^{P}
x(3r+1)W_{N/3}^{r}$$ $$- 2k P rk + W_{N} \sum_{r=0}^{P} x(3r+2)W_{N/3}^{r}$$ (3.16) Each of the sums in Eq (3.16) represents an N/3 point DFT: the first being the N/3 DFT of the 3r points in the original sequence, the second being the N/3 points of 3r+1, and the third being the N/3 points of 3r+2 points of the original sequence. Although the index k of X(k) ranges over N values (k = 0, 1, ..., N-1) each of the summations in Eq (3.16) needs computation over (N/3)-1 points. Eq (3.16) can be rewritten to reflect this: $$X(k) = F(k) + W_{H} G(k) + W_{H} H(k)$$ (3.17) Eq (3.17) can be implemented into the butterfly flowgraph in Figure 3.9 using the accepted notational conventions (Oppenheim and Schafer, 1975). The convention used for the flowgraph is when no coefficient is shown, the branch transmittance is assumed to be one. For other branches the transmittance (multiplier) is an integer power multiplier of W_N . In Figure 3.9 there are three N/3 point DFTs and these are computed with F(k) designating the three point DFT of the 3r points, G(k) designating the three point DFT of 3r+1, and F(k) designating the DFT of 3r+2 points, where F(k) designating the DFT of 3r+2 points, X(0) is obtained by (1) multiplying H(0) by a branch transmittance of 1 (which equals W_N^0), (2) multiplying G(0) by 1, (3) multiplying F(0) by 1, and (4) summing the three. Likewise, X(1) is obtained by multiplying H(1) by W_N^2 , multiplying G(1) by W_N^1 , and adding the results to F(1). X(6) has H(6) multiplied by W_N^{12} and G(6) multiplied by W_N^6 and the products added to F(6) giving: $$X(6) = F(6) + W_N^6 G(6) + W_N^{12} II(6)$$ (3.18) However, since F(k), G(k), and H(k) are all periodic in k with period N/3=3, the periodicity can be exploited to yield F(6) = F(0), G(6) = G(0), and H(6) = H(0). These results can be substituted into Eq (3.18) to give: $$X(6) = F(0) + W_N^6 G(0) + W_N^{12} H(0)$$ (3.19) Figure 3.9. Butterfly Flowgraph for First Stage Decimation (N-9). NOTE: The numbers on the branch between temperatures represent exponents of W_{ij} ; e.g., 6 represents W_{ij}^6 . Continuing to use the periodic properties, the results for X(0) through X(8) are: $$X(0) = F(0) + G(0) + H(0)$$ (3.20) $$X(1) = F(1) + W_9 G(1) + W_9 H(1)$$ (3.21) $$x(2) = F(2) + W_9^2 G(2) + W_9^4 H(2)$$ (3.22) $$X(3) = F(0) + W_9 G(0) + W_9 H(0)$$ (3.23) $$X(4) = F(1) + W_9 G(1) + W_9 H(1)$$ (3.24) $$X(5) = F(2) + W_9 G(2) + W_9 H(2)$$ (3.25) $$X(6) = F(0) + W_{9} G(0) + W_{9} H(0)$$ (3.26) $$X(7) = F(1) + W_9 G(1) + W_9 H(1)$$ (3.27) $$X(8) = F(2) + W_9 G(2) + W_9 H(2)$$ (3.28) Eqs (3.20) through (3.28) conclude the first stage decimation of the 9-point sequence. The DFT computation has been reduced to computations of N/3-point DFTs where N/3 = 3. An example 3-point DFT for x(0), x(3), and x(6) is shown in Figure 3.10. The complete flowgraph for the computation of the 9-point DFT is shown in Figure 3.11 and was obtained by substituting the computation of Figure 3.10 into Figure 3.9. Considering the more general case with N a power of 3 question that two the same decimation procedure would be continued by decomposing the N/3 DFTs into N/9 computations of 1 \sim , G(k), and H(k). The DFT of F(k) is: Figure 3.10. Butterfly Flowgraph for F(k). NOTE: The numbers on branch transmittances refer to powers of $\ensuremath{\text{M}_{\text{N}}}\xspace.$ Figure 3.11. Complete Butterfly Flowgraph (N=9). NOTE: Digits on the branch transmittance refer to powers of $\mathbf{W}_{\mathbf{N}}$. $$F(k) = \begin{cases} (N/3) - 1 & rk \\ \Sigma & x(r) & W \\ r = 0 & 3 \end{cases}$$ (3.29) This equation, letting Q = (N/9)-1, can be divided into three N/9 length sequences: $$F(k) = \sum_{i=0}^{Q} f(3i) W_{N/3}^{3ik} + \sum_{i=0}^{Q} f(3i+1) W_{N/3}^{(3i+1)k}$$ $$= 0$$ $$0$$ $$(3i+2)k$$ $$+ \sum_{i=0}^{Q} f(3i+2) W_{N/3}^{(3i+2)k}$$ $$(3.30)$$ Expanding the exponents of $W_{\rm N/3}$ Eq (3.30) can be rewritten: $$F(k) = \sum_{i=0}^{Q} f(3i) W_{N/3}^{3ik} + W_{N/3}^{2} \sum_{i=0}^{\Sigma} f(3i+1) W_{N/3}^{3ik}$$ $$+ W_{N/3}^{2k} \sum_{i=0}^{Q} f(3i+2) W_{N/3}^{3ik}$$ (3.31) Using the substitution $W_{N/3}^3 = W_{N/9}$ $$F(k) = \sum_{i=0}^{Q} f(3i) W_{N/9}^{ik} + W_{N/3}^{ik} \sum_{j=0}^{\Sigma} f(3i+1) W_{N/9}^{jk}$$ $$= \frac{2k}{W_{N/3}} \sum_{i=0}^{N} f(3i+2) W_{N/9}^{ik}$$ (3.32) Similar expressions for G(m) and H(m) can be derived: $$G(k) = \frac{Q}{i=0} q(3i) W_{N/9} + W_{N/3} \frac{Q}{i=0} q(3i+1) W_{N/9}$$ $$+ W_{N/3} \frac{Q}{i=0} q(3i+2) W_{N/9}$$ (3.33) $$H(k) = \frac{Q}{i \approx 0} h(3i) W_{N/9} + W_{N/3} \frac{Q}{i \approx 0} h(3i+1) W_{N/9}$$ $$+ W_{N/3} \frac{Q}{i \approx 0} h(3i+2) W_{N/9}$$ (3.34) Eqs. (3.32) through (3.34) can be used to derive the general expression for a radix-3 butterfly flowgraph. Letting No9 the expressions for F(k), G(k) and H(k) become: $$F(0) = f(0) + W_3 f(1) + W_3 f(2)$$ $$F(1) = f(0) + W_3 f(1) + W_3 f(2)$$ $$F(2) = f(0) + W_3 f(1) + W_3 f(2)$$ $$G(0) = g(0) + W_3 g(1) + W_3 g(2)$$ $$G(1) = g(0) + W_3 g(1) + W_3 g(2)$$ $$G(3) = g(0) + W_3 g(1) + W_3 g(2)$$ $$G(3) = h(0) + W_3 h(1) + W_3 g(2)$$ $$H(1) = h(0) + W_3 h(1) + W_3 g(2)$$ $$H(2) = h(0) + W_3 h(1) + W_3 g(2)$$ $$(3.37)$$ From Eqs (3.35) through (3.37) the general butterfly multipliers are derived (consistent with Oppenheim and Schafer) to be: $$x(k) = F(k) + W_N G(k) + W_N H(k)$$ (3.38) $$X(k+r) = F(k) + W_N - G(k) + W_N - H(k)$$ (3.39) $$X(k+2r) = F(k) + W \qquad G(k) + W_N \qquad H(k)$$ (3.40) where r represents the distance between the endpoints of the butterfly. In Figure 3.11 r/l for stage 1 and r/2 for stage 2. Eqs (3.38) through (3.40) are represented in Figure 3.12 which is the general radix-3 butterfly flowgraph. The exponents of Figure 3.12 can be rewritten to: $$w^{k+r} = w^k w^r (3.41)$$ $$w^{2k+2r} = w^{2k} w^{2r} ag{3.42}$$ $$w^{k+2r} = w^k w^{2r} (3.43)$$ $$w^{2k+4r} = w^{2k} w^{4r} ag{3.44}$$ With these expressions for the butterfly multipliers an alternative arrangement to Figure 3.12 is possible by "premultiplying" or "twiddling" the inputs to G(k) and H(k) (Centleman and Sande, 1966). The multipliers W_N^k and W_N^{2k} represent the twiddle factors of the butterfly in Figure 3.13. Since N=3r (Oppenheim and Schafer, 1975) the butterfly multipliers can be reduced to: $$w_N^r = w_{3r}^r = \exp(-j2\pi r/3r) = \exp(-j2\pi/3)$$ $$= -0.5 - j.866$$ (3.45) $$W_N^{2r} = W_{3r}^{2r} = \exp(-j4\pi/3) = -0.5 + j.866$$ (3.46) $$W_N^{4r} = W_{3r}^{4r} + \exp(-j8\pi/3) = -0.5 - j.866$$ (3.47) Oppenheim and Schafer observed that there is no advantage in Figure 3.12 to the alternate twiddle factor version in Figure 3.13 because "exp(-j2%/3) and all the powers thereof are complex coefficients that require multiplications". However, for the particular FORTRAN FFT radix-3 programs which implemented Figures 3.12 and 3.13, the twiddle factor Figure 3.12. General Radix-3 Butterfly Flowgraph. Figure 3.13. Basic Twiddle Factor Radix-3 Butterfly. version of the radix-3 FFT was much more efficient to implement because only two twiddre factors had to be computed (W^k and W^{2k}) per butterfly and the butterfly multipliers were the constants in Eqs (3.45) and (3.46), the original version of Figure 3.12 requires that all six complex multipliers be computed for each butterfly. The twiddle factor version represents a simplification over the original radix-3 butterfly. 3.2.3 Radix-5 Theory. The theory for the radix-5 algorithm follows a development similar to the radix-3. Because of this similarity only the radix-5 results are given here for comparison to the radix-3, readers interested in detailed development are referred to Appendix D. The basic butterfly multipliers for the radix-5 are given by: $$X(k) = A(k) + W_{N} B(k) + W_{N} C(k) + W_{N} D(k) + W_{N} E(k)$$ $$X(k+r) = A(k) + W_{N} B(k) + W_{N} C(k) + W_{N} D(k) + W_{N} E(k)$$ $$X(k+r) = A(k) + W_{N} B(k) + W_{N} C(k) + W_{N} D(k)$$ $$+ W_{N} E(k)$$ $$X(k+2r) = A(k) + W_{N} B(k) + W_{N} C(k) + W_{N} D(k)$$ $$+ W_{N} E(k)$$ $$+ W_{N} E(k)$$ $$+ W_{N} E(k)$$ $$+ W_{N} D(k)$$ $$+ W_{N} E(k)$$ $$+ W_{N} D(k)$$ $$X(k+4r) = A(k) + W_{11} - B(k) + W_{14} - C(k) + W_{N} - D(k)$$ $$- 4k+16r + W_{N} - E(k)$$ (3.52) The Eqs (3.48) through (3.52) are shown in the twiddle factor butterfly of Figure 3.14 where "r" is the distance between the butterfly and points. Since N=5r the butterfly multipliers reduce to constant complex multipliers of: These constant butterfly multipliers are computed once during the FFT computation and used in every radix-5 butterfly. 3.2.4 <u>Digit Reversal Algorithm</u>. In order for the DFT to be computed as discussed above, the input data must be stored in nonsequential order. In fact the order in which the input data are stored is in "bit-reversed" order for the radix-2 FFT and "digit-reversed" order for the other fixed-radix algorithms. To see what is meant by this terminology note that for the 8-point radix-2 flowgraph of Figure 3.8 three binary digits are required to index through the data array. Writing the input indices X₀ in binary form and then reversing the order of the segives: Figure 3.14. Radix-5 Twiddle Factor Butterfly. $$X_0(0) = X_0(000) = x(000) = x(0)$$ $X_0(1) = X_0(001) = x(100) = x(4)$ $X_0(2) = X_0(010) = x(010) = x(2)$ $X_0(3) = X_0(011) = x(110) = x(6)$. (3.53) $$X_0(7) = X_0(111) = x(111) = X(7)$$ If $(n_2 \ n_1 \ n_0)$ is the binary representation of the index of the sequence x(n), then sequence value $s(n_2 \ n_1 \ n_0)$ is stored in array position $x_0 (n_0 \ n_1 \ n_2)$. That is, in determining the position of $x(n_2 \ n_1 \ n_0)$ in the input array, the bits of index n must be reversed in order. For the radix-3 FFT the input array must be in a similar nonsequential order. The order is determined by "digit reversing" the input sequence value using a modulo-3 counter. The digit reversed radix-3 FFT example where N≈9 is shown in Figure 3.15. The modulo-3 counter is given by: COUNT = $$(b_1 \cdot 3^1) + (b_0 \cdot 3^0)$$ (3.54) where $b_k = 0$, 1, 2. The reversed
count is given by: REVCOUNT = $$(b_0 \cdot 3^1) + (b_1 \cdot 3^0)$$ (3.55) Eqs (3.54) and (3.55) show the modulo-3 counter for N=9 which requires only two b_k bits: b_1 and b_0 to represent the input sequence. For the case where N=3³=27 three bits are needed to represent the input sequence x(n) and the modulo-3 counter becomes: Figure 3.15. Digit Reversed Input and Output Arrays. count $$(b_2 + 3^2) + (b_1 + 3^1) + (b_0 + 3^0)$$ (3.56) and the reverse digit counter is: REVCOUNT = $$(b_0 \cdot 3^2) + (b_1 \cdot 3^1) + (b_2 \cdot 3^0)$$ (3.57) Similarly the general expressions for COUNT and REVCOUNT can be given where N=3 $^{\rm m}$ and b $_{\rm k}$ = 0, 1, 2: COUNT = $$(b_{m-1} \cdot 3^{m-1}) + (b_{m-2} \cdot 3^{m-2}) + \dots$$ + $(b_1 \cdot 3^1) + (b_0 \cdot 3^0)$ (3.58) and REVCOUNT = $$(b_1 \cdot 3^{m-1}) + (b_2 \cdot 3^{m-2}) + \dots$$ + $(b_{m-2} \cdot 3^1) + (b_{m-1} \cdot 3^0)$ (3.59) Once COUNT and REVCOUNT are computed the magnitudes are compared. If REVCOUNT is less than or equal to COUNT a swap of the values indexed by COUNT and REVCOUNT is not required; otherwise exchange the array value indexed in by COUNT with the array value indexed by REVCOUNT. The cojnters are incremented by one and the process continued until all N indices have been tested. 3.2.5 Development of a Radix-3 FFT Based on the Cube Root of Unity. This section presents the theory of a radix-3 FFT algorithm which uses the complex cube root of unity to perform the complex Fourier transformation (interfly) without using multiplications. The benefit of this technique will also be discussed in the section on real operations count. While the reference (Dubois and Venetsanopoulos, 1970) centains a complete accomption of this technique, it leaves out several steps which aid in understanding the theory and for that reason it is presented again here. This algorithm uses basis vectors (1,u) instead of the conventional complex plane vectors (1,j) to perform the complex Fourier transform (where u is the cube root of 1 and j is the square root of -1). The new basis vectors use arithmetic notation: $$a + bu = R(u)$$; a, b, real numbers (3.60) Taking u as the cube root of 1 implies: $$u^3 - 1 = 0 (3.61)$$ or $$(u-1)(u^2 + u + 1) = 0$$ (3.62) Since it is known $u \neq 1$, then $$u^2 + u + 1 = 0 ag{3.63}$$ or $$u^2 = -1 - u (3.64)$$ Eq (3.60) is used in the definition of multiplication in the R(u) field: $$(a + bu)(c + du) = ac + bdu^2 + adu + bcu$$ (3.65) Substituting Eq (3.64) into Eq (3.65) results in: $$(a + bu)(c + du) = (ac - bd) + (ad + b(c-d))u$$ (3.66) The expression in Eq (3.66) can be expanded and then recombined to reduce the number of multiplications: $$ad + b(c-d) = ad + bc - bd - bd + bd + ac - ac$$ (3.67) $$= ac + ad + bc + bd - ac - bd - bd$$ (3.68) $$= (a + b) (c + d) - ac - bd - bd$$ (3.69) Substituting Eq (3.69) into Eq (3.66) gives: $$(a + bu)(c + du) = (ac - bd)$$ (3.70) $$+ ((a + b) (c + b) - ac - bd - bd))u$$ The result in Eq (3.70) requires three real multiplications and six real additions compared with conventional complex multiplication which requires four real multiplications and two real additions. Multiplication in the R(u) field requires one less multiplication but four more additions. The expression for u^3 is obtained from $u^3 = 1$ by letting $u^3 = (\exp(-j2\pi/3))^3 = 1$. Consequently, $u = \exp(-j2\pi/3) = -1/2 - j(\sqrt{3}/2)$ which is used for conversion between a + bj and c + du: $$c + du = c + d(-1/2-j(\sqrt{3}/2)) = c - d/2-j(\sqrt{3}/2)d$$ (3.71) $$c + du = (c - d/2) + j(-\sqrt{3}/2)d$$ (8.72) To find the conversion from a + bj to c + du, solve Eq (3.70) for j: $$c + du = (c - d/2) + (-\sqrt{3}d/2)$$ $$d/2 + du = (-\sqrt{3}/2)d\dot{\eta}$$ $$d(1/2 + u) = (-\sqrt{3}/2)d$$ $$1/2 + u = (-\sqrt{3}/2) j$$ $$j = (-2/\sqrt{3})(1/2 + u)$$ (3.73) Using Eq. (3.66) and a + bj the conversion to c + du is: $$a + bj - a + b(-2/\sqrt{3})(1/2 + u)$$ = $a + b(-2/\sqrt{3})(1/2) + b(-2/\sqrt{3})u$ $a + bj = (a - b/\sqrt{3}) + (-2b/\sqrt{3})u$ (3.74) Using the R(u) arithmetic developed above, it can be shown that a radix-3 FFT butterfly can be developed which requires no multiplications except for the twiddle factors in Figure 3.13. Using Eq (3.74) and $W_N^r = \cos(2\pi r/N) + j(-\sin(2\pi r/N))$ produces: c + du = $$(\cos(2\pi r/N) + \sin(2\pi r/N)/\sqrt{3})$$ + $(2\sin(2\pi r/N)/\sqrt{3})u$ (3.75) Using the substitution of N = 3r in Eq (3.75) reduces it to: $$W_N^r = (\cos(2\pi/3) + \sin(2\pi/3)\sqrt{3}) + 2\sin(2\pi/3)\sqrt{3})u$$ $W_N^r = 0 + 1u = u$ (3.76) Likewise the remaining W terms in Figure 3.7 can be reduced: $$W_{N}^{2r} = (\cos(4\pi/3) + \sin(4\pi/3)/\sqrt{3}) + 2\sin(4\pi/3)/\sqrt{3})u$$ $$W_{N}^{2r} = -1 - 1u$$ (3.77) $$w_N^{4r} = 0 + 1 u = u ag{3.78}$$ Substituting Eqs (3.76) through (3.78) into Figure 3.13 produces Figure 3.16. Figure 3.16. Radix-3 Butterfly in R(u) Arithmetic. Using arithmetic in E(u) and carrying out the operations in Figure 3.1) shows that only fourteen real agas and no multiplies are required to evaluate the butterfly flowgraph. X_i , Y_i are the butterfly inputs after twiddle factor multiplication and $A(\cdot)$, $B(\cdot)$ are the butterfly outputs in the R(u) field. $$A(1) + B(1)u = (X1 + X2 + X3) + (Y1 + Y2 + Y3)u$$ (3.79) $$A(2) + B(2)u = (X2 + Y2u)(0 + u) + (X3 + Y3u)(-1 - u)$$ + $(X1 + Y1u)$ $$A(2) + B(2)u = (-Y2) + (X2 + Y2 (-1))u + (-X3 + Y3)$$ $$+ (-X3)u - X1 + Y1u \qquad (3.80)$$ $$= (X1 - Y2 - X3 + Y3) + (Y1 + X2 - Y2 - X3)u$$ There are 16 real additions shown in Eqs (3.80) and (3.81); however, by combining common terms -Y2 - X3 = -R and -X2 - Y3 = -S, the radix-3 butterfly can be evaluated using only fourteen real additions (neglecting the twiddle factors): $$\Lambda(1) = X1 + X2 + X3$$ $$B(1) = Y1 + Y2 + Y3$$ $$\Lambda(2) = X1 + Y3 - R$$ $$B(2) = Y1 + X2 - R$$ where $R = Y2 + X3$ - $\Lambda(3) \approx X1 + Y2 S$ - B(3) = Y1 + X3 S where S = X2 + Y3 - 3.2.6 <u>Summary</u>. This completes the discussion of fixed radix FFT theory. In this section the general theory was developed using the radix-3 case as an alternative to the more common radix-2 development. A decimation-in-time for N-9 was shown and the basic butterfly equations for radix-3 was derived. Because of the similarity to radix-3 butterflies, the radix-5 theory was not developed but the butterfly equations necessary to implement a radix-5 FFT was given. Finally, a new radix-3 FFT (Dubois and Venetsanopoulos, 1978) was developed. ## 3.3 Real Operations Count for Fixed Radix FFTs The speed at which an FFT algorithm can perform the DFT is a (to a first approximation) proportional to the number of complex multiplications used in the algorithm (Singleton, 1969). The number of times the data array is indexed is a secondary factor and is shown to have minimal impact on the results of this paper. An anomaly in the nemenclature should be pointed out before further discussion of "complex multiplications" related to FFTs. A complex multiplication implies four real multiplications and two real additions. It has been shown (Singleton, 1969) that $(p-1)^2$ real multiplications are required to evaluate a complex transform of dimension p, p odd, where N-p^m. Singleton then refers to the $(p-1)^2$ real multiplications as $(p-1)^2$ complex multiplications which is a notational contenience since a complex transform of dimension p requires more than $(p-1)^2/2$ real additions. Throughout this paper all references to multiplications and additions are in terms of real operations and not complex operations. The real operations are determined from (1) the number of butterflies times the number of real operations required to compute the butterfly and (2) the number of twiddle factors times real operations required per twiddle factor, and (3) the number of trigonometric functions (sine and cosine) which must be computed. The real operations count for a radix-p FFTs are derived as a function of N, m, and p where $N=p^{m}$. 3.3.1 <u>Number of Butterflies in Fixed Radix-p FFTs.</u> The number of butterflies is dependent on N, m, and p, where N=p^m. Examining the radix-2 FFT in Figure 3-8 shows that there are 8 input points and 8 output points for each stage. The radix-2 butterfly in Figure 3.7 has 2 input and 2 output points which meens that Figure 3.3 must have 8/2 = 4 butterflies per stage. There are 3 stages in this radix-2 FFT (where N-2³) giving a total of 12 butterflies in this FFT. In general the number of radix-p butterflies is given by: mn/p (3.82) This equation can be checked for the radix-3 example. Given that N=9, p=3, and m=2 Eq (3.82) gives the total number of butterflies as $2 \cdot 9/3 = 6$. This is verified by rigure 5.11 which has 6 radix-3 butterflies. 3.3.2 Number of Twiddle Pactors in Fixed Radix-p FFTs. The twiddle factors are complex multipliers of the form exp(-j2*rk/N) which multiply each radix-p butterfly as shown in Figure 3.8. Notice that each stage has N/p = 8/2 = 4 butterflies, each of which requires p-1 = 2-1 = 1 complex twiddle factor. The general expression for number of twiddle factors in each stage becomes: $$N(p-1)/p$$ (3.84) Given that $N=p^m$ there are m stages in a radix-p FFT making the total number of twiddle factors for the FFT equal: $$mN(p-1)/p$$ (3.85) Some of the complex twiddle factors are $W_N^0 = 1$ and can be eliminated. In any FFT there are N-1 of these unity twiddle factors (Singleton, 1969) which gives the final expression for the number of complex twiddle factors as: $$mN(p-1)/p - (N-1)$$ (3.86) Using $N=p^m=2^3\approx 8$ in Eq. (3.86) the number of twiddle factors is found to be 5. Examining Figure 3.8 for $N=2^3$ shows there are 5 non-unity twiddle factors. 3.3.3 Number of Trigonometric Functions Required for the Fixed Radix Algorithms. The trigonometric functions of sine and cosine are needed to compute the twiddle factors. The fixed radix-2 algorithm uses calls to the FORTRAN library SIN and COS functions as well as the difference equations given in Section 3.1. The
radix-3 and 5 FFTs use only sine and cosine difference equations. The radix-2 algorithm in Appendix A computes one sine and cosine at each stage of the FFT using: W = CMPLE (COS(PI/LE1), SIN(PI/LE1)) Each radix-2 FFT has m stages where N=2^m which means the sine and cosine functions are called m times for the FFT. Once the initial sine and cosine are computed for the stage each new twiddle factor in the stage is computed using the complex multiplication: $$U = U * W$$ where the complex U was originally initialized to U = (1,0). The complex multiplication U * W effectively implements the sine and cosine difference equations in Section 3.1. The number of times U * W is computed for each FFT stage is a function of the number of different twiddle factors in the stage m_i . In Figure 3.8 the first stage has only one type of twiddle factor W_N^0 , the second stage has two types: W_N^0 and W_N^2 , while stage has four: W_N^0 , W_N^1 , W_N^2 , W_N^3 . The general expression for the types of twiddle factors in each stage is: $$TF = 2^{k-1}$$ Thus for stage 1, k=1 and $TF=2^0=1$, which gives one type of twiddle factor; for stage 2, k=2 and $TF=2^1=2$ giving two types of twiddle factors; and finally for the last stage in this example k=3 and $TF=2^2=4$, or four types of twiddle factors are required. In general for the radix-2 FrT in Appendix A the complex multiplication \mathbf{U} * \mathbf{W} is evaluated a total of $$\sum_{k=1}^{m} (2^{k-1})$$ times, where m is the number of stages for N=2^m. Given that the complex multiplications requires 4 real multiplications and 2 additions, the number of operations required to compute sines and cosines for this radix-2 FFT is: real mult = $$4 \sum_{k=1}^{m} (2^{k-1})$$ (3.87) real add = $$2 \sum_{k=1}^{m} (2^{k-1})$$ (3.88) sine and cosine calls = $$m$$ (3.89) he real operations required to compute the sine and cosine lookup tables for the radix-3 and 5 algorithms is less complex than the radix-2 FFT. In these algorithms the difference equation from Section 3.1 is used to compute sine and cosine lookup tables which have length N. Because of the symmetry of $\sin(k) \approx -\sin(-k)$ only N/2 computations of the difference equations are required. The equations are given by: $$WKC(I) = C * WKC(I-1) - S * WKS(I-1) + WKC(I-1)$$ $$WKS(I) = C * WKS(I-1) + S * WKC(I-1) + WKS(I-1)$$ which need a total of 4 real multiplications and 10 additions to compute. For an N length sequence computing the lookup tables require: real mult = 4(N/2) = 2N (3.90) real add = 10(N/2) = 5N 3.3.4 Number of Real Operations in Radix-p FFTs. Based on the general expressions in Eqs (3.82) through (3.91) the total number of real multiplications can be determined given N=p^m where N, p, and m are integers. First, each radix-p butterfly computation requires multiplications or additions or both to be evaluated. The exact number of multiplies and adds is determined from the FORTRAN code as shown below. Second, each complex twiddle factor multiplication requires 4 real multiplications and 2 real additions. Third, the number of real operations to compute the sines and cosines is added to the butterflies and twiddle factors to give the total operations count for each algorithm. For the case of $N=2^m$ it was shown in the radix-2 Section 3.2.1 that the radix-2 butterfly can be computed with 4 real additions and no multiplications. This radix-2 butterfly can be computed with 4 real additions and no multiplications. This radix-2 FFT does not eliminate all multiplications by W_N^0 . Therefore each radix-2 butterfly is multiplied by a complex twiddle factor as shown in Figure 3.8. For this particular radix-2 FFT the number of twiddle factors equal the number of butterflies. Combining all sources of real operations for the radix-2 FFT gives a total of: Substituting the appropriate values for the radix-2 gives: real mult = (0) * $$(mN/2) + 4*(mN/2) + 4* (\frac{m}{2}2^{k-1})$$ = $2mN + 4 \sum_{k=1}^{m} 2^{k-1}$ (3.93) Likewise for the number of real additions: real adds = 4 * $$(mN/2)$$ + 2* $(mN/2)$ + 2 * $(\sum_{k=1}^{m} 2^{k-1})$ = $3mN$ + 2 $\sum_{k=1}^{m} 2^{k-1}$ (3.95) For the radix-p FFTs where p is an odd prime it has been shown by Singleton, 1969, that these butterflies can be evaluated using (p-1)² real multiplications. The FORTRAN coded radix-3 and radix-5 in Appendices B and D require 4 real multiplications and 12 additions for radix-3 butterflier and 16 real multiplications and 30 additions for radix-2 butterflies. Using these in Eqs (3.87) and (3.91) yields the total real operations for the radix-3 as: real mult = $$(4 \text{ mult per butterfly}) * mN/3$$ + $4 (mN(3-1)/3 - (N-1)) + 2N$ = $4mN/3 + 8mN/3 - 4(N-1) + 2N$ = $4mN - 4(N-1) + 2N$ (3.96) real adds = $(12 \text{ adds per butterfly}) * mN/3$ + $2 (mN(3-1)/3 - (N-1)) + 5N$ = $12mN/3 + 4mN/3 - 2(N-1) + 5N$ (3.97) Similarly the real operations count for the radix-5 FFT becomes: real mult = $$(16 \text{ mult per butterfly}) * mN/5$$ $+ 4(mN(5-1)/5 - (N-1)) + 2N$ $= 16mN/5 + 16mN/5 - 4(N-1) + 2N$ $= 32mN/5 - 4(N-1) + 2N$ (3.98) real adds = $(30 \text{ adds per butterfly}) * mN/5$ $+ 2(mN(5-1)/5 - (N-1)) + 5N$ $= 30mN/5 + 8mN/5 - 2(N-1) + 5N$ $= 38mN/5 - 2(N-1) + 5N$ (3.99) The results of Eqs (3.92) through (3.99) are given in Table 3.1 for N between 8 and 16,000. This table also summarizes the possible values of N for the fixed radix-2, 3, and 5 FFTs. 3.3.5 Real Operations Count for the Radix-3 FFT Using the Complex Cube Root of Unity. This algorithm represents an alternative to the conventional radix-3 FFT. It is shown in this section that selective use of this TABLE 3.1 . REAL OPPRATIONS COURT FOR PARAM-2,3 AND 5 | | | ₹ | , | | |-------|------------------|------------------------|-----------|--------------| | N | Radix | Multiplications | Additions | Trig Library | | 8 | . 2 ³ | 76 | 86 | 3 | | 9 | 3 ² | 58 | 125 | 1 | | 16 | 24 | 188 | 222 | 4 | | 25 | 5 ² | 274 | 457 | 1 | | 27 | 3 ³ | 274 | 515 | 1 | | 32 | 2 ⁵ | 444 | 542 | 5 | | 64 | 26 | 1020 | 1278 | 6 | | 81 | 3 ⁴ | 1138 | 1973 | 1 | | 125 | 5 ³ | 2154 | 3227 | 1 | | 128 | 27 | 2300 | 2942 | 7 | | 243 | 3 ⁵ | 4378 | 7211 | 1 | | 256 | 28 | 51.16 | 6654 | 8 | | 512 | 29 | 11260 | 14846 | 9 | | 625 | 5 ⁴ | 14754 | 20877 | 1 | | 729 | 3 ⁶ | 15142 | 25517 | 1 | | 1024 | 2 ¹⁰ | 24 5 7 2 | 32766 | 10 | | 2048 | 2 ¹¹ | 53244 | 71678 | 11 | | 2187 | 3 ⁷ | 56866 | 88211 | 1 | | 3125 | 5 ⁵ | 93754 | 128127 | 1 | | 4096 | 212 | 1146 | 155646 | 12 | | 6561 | 38 | 196834 | 299621 | 1 | | 8192 | 2 ¹³ | 245756 | 335870 | 13 | | 15625 | 56 | 568754 | 759377 | 1 | | | | | | | algorithm can reduce the number of real operations depending on the sequence length \mathbb{N}_{\star} The radin-3 PFT in the R(u) field has four sources or real multiplications (where N-3^m): - 1. 2mm/3 (N-1) complex twiddle factors derived in Section 3.3.3. - 2. Conversion from complex to R(u) of $\mathbb{Z} \ 2(3-1)$ i=2 twiddle factors derived from PORTRAN code in Appendix C. - 3. Conversion of complex array of length N to the R(u) field derived from the FORTRAN code. - 4. Conversion of R(u) array length N back to the complex field derived from the FORTRAN code. The radix-3 in R(u) has five sources of real additions: - 1. mn/3 butterflies derived in Section 3.3.3. - 2. The four sources of real multiplies listed above. Based on the FORTRAN code in Appendix C, there are three real multiplications per complex twiddle factor, two per twiddle factor conversion, two per conversion from complex to the R(u) field, and two per conversion from R(u) to the complex field. Condensing the above into an equation for real multiplications yields: real mult = $$3(2\pi N/3 - N+1) + 2\sum_{i=2}^{m} 2(3-1) + 4N$$ (3.100) There are 14 real additions per butterfly, six per twiddle factor, one per twiddle factor conversion, one per conversion to R(u) array, and one per conversion to complex array. Expressing the total number of real additions as a function of the above yields: real adds = 14 mN/3 + 6(2mN/3 - N+1) The results for the number of real multiplications and additions for both radix-3 algorithms is given in Table 3.2 for N=27 to N=19683. Because the R(u) radix-3 requires more multiplications and additions for N=27 and 81 it will always run slower than the complex field radix-3 FFT. But, for N=243 and higher the R(u) radix-3 may run faster depending upon the speed of additions relative to multiplications for the computer being used to perform the FFTs. Table 3.2 also gives the "Add to Multiply Ratio" required for the R(u) field radix-3 FFT to run faster than the conventional radix-3 FFT. (The ratio is the difference in the number of multiplies divided by the difference in the number of additions.) For the case of N=729, a multiply operation must take 3.77 times longer than an addition before the R(u) field radix-3 can run faster than the complex field radix-3. This means that prior to selection either of the algorithms the relative costs of additional to multiplications must be known as well as the length of the data sequence. 3.3.6 Memory Requirements for Fixed Radix FFTs. A major consideration for selecting a particular FFT algorithm is the sequence length and memory required to execute the subroutine relative to the memory available in the computer. For this reason the memory requirements TABLE 3.2 COMPARISON BETWEEN COMPLEX AND R(u) RADIX-3 FFT FOR REAL OPERATIONS* | N | Complex
Real Mult | Radix-3
Real Adds | R(u) Ra
Real Mult | dix-3
Real Adds | Add to
Mult Ratio | |-------|----------------------|----------------------|----------------------|--------------------|----------------------| | 27 | 220 | 380 | 232 | 624 | NA | | 81 | 976 | 1568 | 1284 | 2562 | NA | | 243 | 3892 | 5996 | 3140 | 9796 | 5.05 | | 729 | 14584 | 21872 | 10912 | 35714 | 3.77 | | 2187 | 52492 | 77276 | 37152 | 126108 | 3.18 | | 6561 | 183712 | 266816 | 124628 | 435202 | 2.85 | | 19683 | 629360 | 905420 | 413308 | 1476212 |
2.63 | ^{*} Does not include computing sine and cosine terms for the radix-2, 3, and 5 FFTs is given here as a function of sequence length N. The program memory and data array storage requirements for each algorithm are enumerated below. The program memor, required by each routine was determined from a "load map" generated by the command MAP, PART. The array storage requirements were determined by inspection of the DIMENSION statements in the FORTMAN code for each subroutine listed in Appendix A to D. The results are: | $\overline{\text{FFT}}$ | Program | Arrays | |-------------------------|---------|-------------| | Radix-2 | 108 | 2N | | Radix-3 | 301 | 4N + M + 30 | | Radix-3 in R(u) | 396 | 4N + M + 30 | | Radix-5 | 458 | 4N + M + 30 | The memory arrays required for each algorithm as a function of N are listed in Table 3.3. The program memory was not included because it is dependent on machine word size which varies from machine to machine. ## 3.4 Mixed Radix FFT Algorithms Up to this point only fixed radix FFTs hat been discussed. Explanation and programming f., the special cases where $N=2^m$ or 3^m or 5^m are simpler than the general case of $N=p_1p_2...p_m$, and for most applications the restricted choice of values is adequate. However, when the application does not permit "zeropacking" of the data sequence to reach one of the special cases a wider choice of N is needed. TAPLE 3.3 FINED RADIX MEMORY REQUIRED | <u>N</u> | Memory Array | |------------|--------------| | 8 | 16 | | 9 | 68 | | 16 | 32 | | 2 5 | 132 | | 27 | 141 | | 32 | 64 | | 64 | 128 | | 81 | 358 | | 125 | 533 | | 128 | 256 | | 243 | 1007 | | 256 | 512 | | 512 | 1024 | | 625 | 2534 | | 729 | 2952 | | 1024 | 2048 | | 2048 | 4096 | | 2187 | 8820 | Singleton first published a mixed radix FFT algorithm in June 1969 which has been widely used and implemented on large and small computers. This algorithm is listed in Appendix F. (The International Mathematical Scientific Library (IMSL) which is available on the WPAFB CDC Cyber 74 computer has a mixed radix FFT based on Singleton's work). Also the author has written and tested a mixed radix algorithm which is listed in Appendix E. The theory, digit reversal, real operations count, and memory requirements for these algorithms is discussed in the following sections. 3.4.1 Mixed Radix Theory. All FFT theory can be developed by representing a one-dimensional sequence N as several two dimensional matrices and performing operations on these matrices. Understanding this approach when exposed to it for the first time is difficult. For this reason the matrix development is presented here and then a specific excepte of N=30 is treated to increase understanding of the technique. The complex Fourier transform is defined as: $$N-1$$ $N(k) = \frac{1}{2} \times (n) \exp(-j2\pi nk/k)$ (3.102) For k 0, 1, ..., N-1 where X(k) and x(n) are both complex valued. Eq (3.102) can be expressed as a matrix rultiplication: X = Tx The matrix T can be decimated—in-time (Cooley and Tukey, 1965) or frequency (Centleman and Sande, 1966) to produce equally efficient factoring: $$T = P \cdot P_1 \cdot P_{r-1} \cdot \cdot \cdot \cdot \cdot P_2 \cdot P_1$$ where F_i is the decimation corresponding to the factor n_i of: $N = n_r n_{r-1} \dots n_2 n_1$ and P is the permutation (digit reversal) matrix (Singleton, 1969). The matrix F_1 has only n_1 nonzero elements on each row and column and also be partitioned into N/n_1 square submatrices of dimension n_1 ; it is this partition that is the basis for these (mixed radix) algorithms" (Singleton, 1969). The matrices F_1 can be further factored into: $$F_{i} = R_{i} T_{i} \tag{3.103}$$ where R_i is the diagonal matrix of twiddle (rotation) factors. Using these twiddle factors enable the trigonometric symmetries and complex multipliers (e.g., $e^{j\pi}$, $e^{j\pi/2}$, ..., $e^{j\pi/N}$) to be exploited in the FFT butterflies and reduce the number of real operations. A specific decimation-intime example is now considered which uses the above ideas. Given an N-point sequence for which the N-point DFT is desired, the integer 2 can be factored into a product of smaller integers assuming N is not prime. The successive factorization of one number into two can result in any possible combination. If N=30, it can be factored as $5 \cdot 6$ and then as $5 \cdot 3 \cdot 2$. The first decomposition is shown in Figure 3.17 and is presented as six 5-point DFTs followed by five 6-point DFTs. The next stage of decomposition is from $5 \cdot 6$ to $5 \cdot 3 \cdot 2$ and is shown in Figure 3.18. Starting with the DFT expression in Eq (3.99) the sequence can Figure 3.17. First Pecomonition N 30. Figure 3.18. Butterfly Flowgraph for Na30. be factored into N=p \cdot q \times 5 \cdot 6 (representing a 5 by 6 matrix) and the expression becomes: $$X(x) = \sum_{m=0}^{p-1} w_{N} - \sum_{r=0}^{p-1} x(prim) w_{N}$$ (3.104) Now the inner sums can be expressed as the q-point DPTs: $$G_{m}(k) = \frac{q-1}{\sum_{r=0}^{\infty} x(pr+m)W_{q}}$$ (3.105) since Using p=5 and q=6 in Eq (3.104) produces: $$X(k) = \sum_{m=0}^{4} W_{30} \sum_{r=0}^{5} x(5r+m) W_{30}$$ (3.107) The inner sum in Eq (3.107) is a 6-point DFT which can be decomposed into a 3 by 2 matrix by dividing the sequences x(5r+m) into three sequences, each two points long. The inner summation in Eq (3.107) can be represented using the notation of Eq (3.104) as: $$G(k) = \frac{p-1}{s} \frac{sk}{s} \frac{g-1}{s} \frac{ptk}{g(pt+s)W_N}$$ (3.108) where N is now equal p \cdot q = 3 \cdot 2. Substituting p and q yields: $$G(k) = \sum_{s=0}^{2} w_{6} + \sum_{t=0}^{2} g(3t+s)w_{6}$$ (3.109) This expression in Eq. (3.109) can be substituted into Lq. (3.107) to give: $$X(k) = \frac{4}{m\pi 0} \frac{mk}{30} \frac{2}{s=0} \frac{sk}{k} \frac{1}{k=0} \frac{tk}{k(15t4.5s+m)W_2}$$ (3.110) where $$r = 3t+s$$ $g(3t+s) = x(5(3t+s)+m) = x(15t+5s+m)$ $3tk$ $W_6 = \exp(-j2\pi \cdot 3tk/6) = \exp(-j2\pi \cdot tk/2) = W_2$ $m = 0, 1, 2, 3, 4$ $s = 0, 1, 2$ $t = 0, 1$ The complete flowgraph is shown in Figure 3.18 and implements Eq (3.110). 3.4.2 <u>Digit Reversal Algorithm (General)</u>. The permutation matrix P is required because the transformed result is in a digit reversed order. Given a factorization of N = n_m n_{m-1} ... n_2 n_1 , the Fourier coefficient of X(k) with: $$k = k_m n_{m-1} n_{m-2} \dots n_1 + \dots + k_2 n_1 + k_1$$ (3.111) is found in location: $$k' = k_1 n_2 n_3 \dots n_m + k_2 n_3 n_4 \dots n_m + \dots + k_m$$ (3.112) In general the interchange of k with k' can be done "in place" if N is factored such that (Singleton, 1977): $$n_{i} = n_{m-i} \tag{3.113}$$ for i less than n-i. For this factoring k can be counted in natural order and k! In digit reversed order as described for fixed-radix algorithm bit-reversal. To implement this technique for mixed radices N is factored into its prime factors and the "square" factors arranged symmetrically around the "square-free" factors of N. For example, let N=270 and be factored as: $$3 \cdot 2 \cdot 3 \cdot 5 \cdot 3$$ Now the reordering, P, is factored into: $$P = P_1 P_2$$ (3.114) The reordering P_1 is "associated with the square factors of n and is done by pair interchanges as previously described, except that the digits of n corresponding to the square-free factors are held constant and the digits of the square factors are exchanged symmetrically" (Singleton, 1977). For example, if: $$N = n_1 \quad n_2 \quad n_3 \quad n_4 \quad n_5 \quad n_6 \quad n_7 \tag{3.115}$$ with $n_1 = n_7$, $n_2 = n_6$, and n_3 , n_4 , n_5 relatively prime, the interchange associated with the square factors n_1 , n_7 , n_2 , and n_6 is given by: $$k = k_7 n_6 n_5 \dots n_1 + k_6 n_5 n_4 \dots n_1 + k_5 n_4 n_3 n_2 n_1$$ $$+ k_4 n_3 n_2 n_1 + k_3 n_2 n_1 + k_2 n_1 + k_1$$ (3.116) interchanged with: $$k' = k_1 n_6 n_5 \dots n_1 + k_2 n_5 n_4 \dots n_1 + k_5 n_4 n_3 n_2 n_1$$ $$+ k_4 n_3 n_2 n_1 + k_3 n_2 n_1 + k_5 n_1 + k_6$$ (3.117) This reordering P_1 in this example places each element of X(k) in the correct segment of length N/n_1 n_2 , grouped in "subsequences" of n_1 n_2 consecutive elements (Singleton, 1977). The next reordering P_2 then finished the reordering of each n_3 n_4 n_5 subsequences within each N/n_1 n_2 segment. The above factorization is used in the Singleton and IMSL mixed radix algorithms and generates a complicated FORTRAN code. A simpler alternative factorization was written by the author and used in his mixed radix algorithm. The simpler algorithm requires an additional two arrays of length N to store the intermediate results which detracts from the algorithms utility when longer sequence lengths are transformed. The details of this factorization are presented in Appendix E for interested readers. 3.4.3 <u>Twiddle Factors</u>. In Section 3.4.2 the factoring into F_i was described corresponding to a factor n_i . F_i can be factored to give a product R_i T_i where the matrix T_i is one of N/n_i identical Fourier transforms of dimension n_i and R_i is a diagonal twiddle factor matrix. The elements of R_i are specified by the decimation-in-frequency version of the FFT (Singleton, 1977). The twiddle factor matrix R_i multiplies each transform T_i of dimension n_i by $e^{j(Z)}$ where Z is an angle from the set: 0, z, 2z, ..., $(n_i-1)z$ (3.118) and $z=2\pi/N$. No multiplication is needed for the zero angle which gives at most $N(n_i-1)/n_i$ complex multiplications for each transform step ((Sin Peles, 1977). Additionally, the last stage of a division in Trequency (FT requires no twiddles and the number of congless multiplications can be further reduced by (N-1). Given a factorization of $N = \Gamma_m / \Gamma_{m-1}$, ... Γ_2 / Γ_1 the number of twiddle factors for an N length sequence is $$\sum_{i=1}^{m} (N(n_i-1)/n_i) - (N-1)$$ (3.119) This result is used in computing the number of real
multiplications and additions required by an N length FFT. and Cosine Difference Equation. Recall from Section 3.1 that trigonometric values used in an FPT can be computed using the difference equations: $$\cos((k+1)a) = (C \cdot \cos(ka) - S \cdot \sin(ka)) + \cos(ka)$$ (3.120) $$\sin((k+1)a) = (C \cdot \sin(ka) + S \cdot \cos(ka)) + \sin(ka) \quad (3.121)$$ where $a = 2\pi/N$ radians $$C = -2 \sin^2(a/2)$$ $$S = \sin(a)$$ $$\cos(0) - 1$$ $$sin(0) = 0$$ In the case of the author's mixed radix FFT the difference equations are computed N times and the sine and cosine results stored in two lookup tables. The difference equations are given by: WRC(I) $$C * WCC(I-1) - S * WKS(I-1) + WKC(I-1)$$ (3.122) $$WKS(I) = C * WKS(I-1) + S * WKC(I-1) + WKS(I-1)$$ (3.123) teps (3.122) and (3.123) require 4 real multiplications and 10 real additions each time they are computed. Given they are computed N Limes, the operations count is given by: real mult = $$4N$$ (3.124) $$real adds = 10N (3.125)$$ The IMSL and Singleton FFTs do not use the sine and cosine lookup tables in order to save memory arrays. Instead the sine and cosine values are computed as needed in the FFT program resulting in an intricate FORTRAN code. It was determined from the FORTRAN coded IMSL and Singleton FFTs that both utilize the same method of computing the sine and cosine difference equations. For this reason only the Singleton FFT algorithm was studied. An algorithm which computes the number of real operations required was interpolated from "counters" placed in the FFT FORTRAN code in Appendix F. They provided the number of times that each section of the FFT subroutine was used to compute the sine and cosine values for different values of N. The labels for the counters are shown below along with the lines of FORTRAN code where they were positioned. The lines of code are shown in Appendix F. - 12C: Counter for the radix-2 difference equation in lines 2330 2340. - 12CL: Counter for the radix-2 sine and cosine library calls in lines 2650 2660. - 14Cl: Counter for the radix-4 section which compute: the sine and cosine terms of the Wk leg of the radix-4 in lines 3030 3040. Refer to Figure 3.19 which shows the radix-4 butterfly flowgraph. Figure 3.19. Radix-4 Butterfly Flowgraph Showing the 4 Twiddle Pactor Multipliers. 14C2: Counter for the radix-4 section which computes the sine and cosine terms of the w_N^{2k} and w_N^{3k} legs of the radix-4 butterfly flowgraph in lines 3140 - 3170. 14CL: Counter for radix-4 sine and cosine library calls in lines 3690 - 3700. IGTF: Counter for the general twiddle factors section in lines 4990 - 5000 which computes the sine and cosine for the $W_N^{\rm R}$ leg of the general radix-p FFT. ICTFE: Counter for the general twiddle factors section which computes the sine and cosine for the remainder of the radix-p butterfly legs in lines 5170 - 5190. IGTFL: Counter for the general radix-p sine and cosine library calls in lines 5290 - 5300. Data was collected for over 70 values of N using these counters. A subset of the values were the 59 permissible sequence lengths of PFA and WFTA. Based on the results of these tests and study of the FORTRAN code FFT in Appendix F the general expressions for these counters were determined. Given that: N =sequence length NFAC(i) = factors of N (as factored by the Singleton subroutine) M = number of factors of N $KSPAN_i = N/(NFAC(1) * NFAC(2) ... * (NFAC(i-1))$ then $I2C_i = (KSPAN_i - 3)/2$ for $KSPAN_i \ge 4$ and odd ${\tt I2C}_{\dot{i}} = ({\tt KSPAN}_{\dot{i}} - 2)/2 \ {\tt for} \ {\tt KSPAN}_{\dot{i}} \ge 4 \ {\tt and} \ {\tt even}$ $12C_i = 0$ for $KSPAN_i < 4$ For the factors of 2 in M the expression for 12C becomes: The expression for the number of sine and cosine calls during computation of a factor of 2 is [KSPAN $_{1}/70$] where [•] represents truncation of the result inside the brackets. Using the "truncation" notation: The radix-4 section uses the same notational conventions for KSPAN and truncation. The expressions for I4Cl, I4C2, and I4CL become: $$14C2_{i} = KSPAN_{i} - 1$$ (3.128) $$14CL_{i} = [KSPAN_{i}/32]$$ (3.129) $$14Cl_{i} = 14C2_{i} - 14CL_{i}$$ (3.130) For all factors of 4 in N the expression becomes: $$14C2 = \sum_{i=1}^{k} (KSPAN_{i}-1)$$ (3.131) $$I4CL = \sum_{i=1}^{k} [KSPAN_{i}/32]$$ (3.132) $$14C1 = 14C2 - 14CL$$ where there are k factors of 4 in N. The general expressions for IGTF, IGTFE, and IGTFL were derived to be: $$IGTFL_{i} = (SPAN_{i}/32)$$ (3.134) $$IGTF_{i} = RGPAN_{i} - IGTFL_{i} - 2$$ (3.135) $$IGTED_{i} = (KSDAU_{i} - 1) (NFAC(i) - 1)$$ (3.136) The result for the general radix-p section becomes: $$IGTF = \begin{cases} k \\ \mathbb{X} & IGTF_{i} \\ i=1 \end{cases}$$ (3.137) $$IGTFL = \begin{cases} k \\ \mathbb{Z} & IGTFL_{i} \\ i=1 \end{cases}$$ (3.138) $$IGTFE = \sum_{i=1}^{k} IGTFE_{i}$$ (3.139) Eqs (3.124) through (3.139) were programmed in FORTIVAN and then tabulated as a function of N in Table 3.4. These results identically match the tests conducted using the counters. Examining the FORTRAN code where the counters were located gives the number of operations performed each time one of the counters was incremented. These results are presented in Table 3.5 for all the counters. The number of real operations, sine and cosine library calls, and exponentiations can be determined for all N length sequences by using Tables 3.4 and 3.5. The general expressions are given by: $$KADD = 4(12C + 14C2 + 1GTF) + 3(14CL) + 2(1GTFL) - (3.140)$$ $$KMULT = 4(12C + 14C2 + 1GTT + 1GTFE) + 6(14C1)$$ (3.141) $$KEXP = 2(14C1)$$ (3.142) 3.4.5 Real Operations Count for Mixed FFTs. The real operations count is derived from the number of complex twiddle factors, the number of butterflies, and the number of sine and cosine terms computed using difference equations. १८६८६ ३.४४ THE SAMONATION OF THE STREET, NO STEELS | , | | | | | | | • | ٠ | | ٠ | 1: | , | | | • | | r 1 | . 1. | 1.4 | + 4 | ١, | ** | · r | 1.1 | ., | t i
eri | ŗ. | t- | \$ | , | * 1
*** | 1 | ·ř | |---|-----------------------|-----|----|-----|-----|-----|-----|-----|------|-------|-----|----------|------|------------|-----|-----|------------|------|-----|------|-----|--------------|------|------------|-----|------------|------------|-----|-----------|--------------|------------|------------|-----| | į | - 1
 | | | | | ζ./ | | | | | 5 , | | | | | | | . , | 4. | . , | Α | | | | | 4 | • • | | • | v , J | O | Ö | C) | | |) | · | | ٠. | | | 4 | • | , | e ye | 1 1 | | ı | | . • | | ٠.٣ | | 1 | | | | ki i | ()
 1 | | 171 | • p
- 1 | ı J | | œ | C1 | W) | 27 | | | 1
1
1 | O | ζ. | 'n | . j | | . * | (_) | · | | 5 (| <u> </u> | ζ. | <u>.</u> . | . • | X.2 | ć., | (_) | ٧٠ | N.A | • | | | Ļ | 1 1 | O | ڼ | 4 | O | C. | 0 | O | 0 | | | 17.75°C | ۲. | Ĺ | ١, | * | ٠. | E. | Ç. | · '' | ۰۰ و⁻ | | .* | C) | C. | | (*) | Ç, | | Ç. | | | - 12 | i, | (4 | 1 2 | . | v. | 11 | ¢ | ζ., | ن | <u></u> | Ö | | | er*
[]
5]
64 | , 1 | | ٠. | | g t | 1, | w." | · | í |) v | - | | £ 5 | • | (*) | | | | | 4 | | *.* | ÷ 3 | · · | ¢. | -Ki | r + | \$ | Ç : | C.2 | رر، | Ç) | | | | | | | , | | | • | | ٠, | ٠. | 4 | | | | | | | | | | | | | | | | | , | · | . | į, v | | | | : | | | | | | | . • | | • | , | 4 | - 14 | ì | | . , | | ٠,٢ | | 1 | 141 | \ <u>.</u> . | | | (*) | ₹. | | | .÷
r 4 | · j· | <. | (<u>)</u> | t · | | | įt | 1 | | , • | , | ŧ. | | i | t | | | | | | 17 | , · | | | , , | · f• | · 1 | | | | ٠, | 1.4 | (- i | - t | 1. | | | | . J | こうしょう あきしている あんかい Table 3.48 RESTREE OF STREET IN STREET | sal
ber
Eng
Car
Car
Eng | N 0 | ا نیا
ا ن | · | 1 (| | 614
64 | 'y,
'L | .11 | ëi
ei | 1
11 | (4)
(*)
(*) | S. | ι, | जें
व | di
di | 17.1 | i i | 1)
13 | ָּ,テ | 5 95 | | | با. | V2
(1)
(1) | • • • | 1 4
**
* 1 | : r
: r
: r | | ()
1 T
(2) | |--|----------|--------------|-----|----------|-----------|--------------|----------------|-----|----------------------|------------|-------------------|-----|---------|---------------------|----------------|------|----------------|---------------|---------------------------------------|-----------------|-----------|-----------------|----------|------------------|-------|------------------|----------------------|-------------------|---------------------| | | | | · • | 4 | J. T. | | r 4 | | | . 1 | e d | r-1 | Y.,. | ı i | | (*) | 4 - 1 | (*, | ٧. | ti i | v | • | , 1 | | | · J* | | : 4 | , in | | <u>;</u> : | | 4 (Ö | 5 E | • , | . 1 | .4 | .7 | · • | v:1
≠ =1 | , -1 | e j | Lo. | (1 | • p | : 4
 | 00 | 28 | 517 | Ç. | 163 | 3.7 | | :.
U | t
t | ું: | (b) | 1.7 | uri
uri
uri | থা
থা | | | .) < | <i>ي. ر</i> | 2 1 | 3 | e) | c . | 61 | ن | ı -4 | • | Ö | Ç | r=-1 | Ç | O | ب | (4 | ن | × * | ď. s | 7 | ζ. | u · | ن | f ~ | O | 13 | φ | 39 | | 1402 | о « |) (| γ, | ⊋ | 23 | C | 0 | 0 | L _i + C · | | (,) | | ഗ്
ഗ | Ų. | O | ٥ | (n)
(n) | ت | G | 0 | 139 | 0 | 17.9 | c) | 251 | | 419 | C . | 1259 | | 1401 | Ø) · |) (| 9 (| ن ا | 23 | es. | τ, | O | 34. | () | J | ري | 58 | Ç,r | ر. | C | 81 | C | O | O | 135 | O | 11.4 | ن | 244 | Ü | 4
⊕0.6 | Ċ | 1220 | | 7.00 | 28.4 | | Ī. | . ' | etik. | | 4_ * | Н | v * | , 1 | (,) | e=1 | 6.1 | •) | •) | ¢3 | , i, | €*) | (**, | ~ | C) | ,- - | | Ø | χ.1 | (** | ι | (T) | | | <u>.</u> | , .
C | 1 | .) | | - 1 | 4.1.
(L.) | Ġ, | e) | . N | (<u>)</u> | -1 | Ņ | Ċ | 26 | 100 | C | C: | : ' ,
- jr | ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; |
Q. | C | W | (Ti | 30.1 | . * | 151 | Ç, · | 1,00 | 0 | | ¥t | 1. · | r
., | | /)
-4 | ;;
;;4 | /11
/ | -1
-1
-4 | -1 | :;;
;;; | 1: | | r=t | in the | (1)
(ii)
(ii) | 11 | r t | 90
90
90 | (-)
•Ç• | . 1 | ক
ত | τυ
(r) | ,
(2) | (4
 - | (n)
(4 | 1008 | 136. | ()
()
()
() | C1
(4
(7) | 5047 | TABLE 3.5
OPERATIONS EXECUTED FOR EACH COURTER | Counter | Real
Add | Real
Mult | Exponentiation | Sino
Calls | Cosino
Calls | |---------|-------------|--------------|----------------|---------------|-----------------| | 12C | 4 | 4 | 0 | 0 | 0 | | 1201 | 0 | 0 | 0 | 1 | 1 | | I4C1 | 3 | 6 | 2 | С | 0 | | I4C2 | 4 | 4 | 0 | 0 | 0 | | 1401 | 0 | 0 | 0 | 1. | 1 | | ICTF | 4 | 4 | 0 | 0 | 0 | | IGTPE | 2 | 4 | 0 | 0 | 0 | | IGTFL | 0 | 0 | 0 | 1 | 1 | AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOTETC F/6 12/1 EFFICIENT COMPUTER IMPLEMENTATIONS OF FAST FOURIER TRANSFORMS. (U) DEC 80 J D BLANKEN AFIT/6E/EE/80D-9 NL AD-A100 782 UNCLASSIFIED 2 = 4 40 10076 Given that N is factored as: $$N = P_1 P_2 \dots P_m$$ (3.143) the number of twiddle factors has been shown (Singleton, 1969) to be: $$\sum_{i=1}^{m} (N(p_i - 1)/p_i) - (N-1)$$ (3.144) where m is the total number of factors of N. The number of butterflies required for an N length sequence is given by: $$\begin{array}{c} m\\ \Sigma (N/p_i)\\ i=1 \end{array} (3.145)$$ The total real operations count is determined by adding (a) the number of real multiplications and additions required per butterfly times Eq (3.145), plus (b) the complex twiddle factor multiplications times Eq (3.144), plus (c) the number of additions and multiplications given by Eq (3.140) and (3.141). Assuming a complex multiplication requires four real multiplications and two additions a general expression for the real operations count can be determined for the mixed radix FFTs. Singleton's mixed radix algorithm contains special transform sections for factors of 2, 3, 4, and 5 as well as a general section for other odd factors. This requires that N be represented as: $$n = 2 \quad 3 \quad 4 \quad 5 \quad p_1 \quad p_2 \quad \dots p_k$$ (3.146) The IMSL mixed radix FFT (FFTCC) does not have a special section for factors of 5 and uses the general section to transform these factors. The author's mixed radix FFT (FFTMR) has sections for 2, 3, 4, and 5 but does not have the general transform section. Only the detailed development of operations count for Singleton's algorithm is presented here because the other two algorithms are subsets thereof. The general expressions for real operations versus N are given for the other two algorithms in Appendix G and H. The radix-2 section of the FORTRAN code for Singleton's algorithm is shown in Figure 3.20. For factors of two the twiddle (rotation) factor complex multiplications are computed in this section rather than the "general rotation section" to reduce the array indexing required. Using Eq (3.144) the total number of butterflies is rN/2 and from Eq (3.145) the total number of twiddle factors is rN/2 (neglecting the -(N-1) term which will be subtracted once the complete real operations count for all factors has been developed). The transform for factor of 2 (refer to Figure 3.20) is computed in lines 2200-2230 using 4 real additions, if no twiddles are required, or it is computed in lines 2450-2500 if twiddles are necessary. The general expression for factors of two becomes: real mult = $$4(rN/2) = 2rN$$ (3.147) real adds = $$4(rN/2) + 2(rN/2) = 3rN$$ (3.148) The factors of 3 section shown in Figure 3.21 performs only the butterfly in this section and uses the general ``` 1.48 - 1.48 - 1.48 - 1.48 . . . The second secon 1 6 8 1 T gin, c, t(≠t Burney. Provide the strain of the reserve of contents at the second of secon Colors Exprise of Abberta administration of the district 1 - (m) (1=f0) [27] 94 (ma)? Comments of 1 4 Pm. 11 - 11 - 1 post of the - F1 10 F1 + F4 - 作用数字数 24 108 FO 12 8 PE 4 MERRY F . 1 22 그림의 목 한테달에 무 열대였다. The # Ports - Follow Para to 海南的 化三角 计扩充 医异性溶液 $ 40.15 State of the Police of the Police 1911 11 1 Bright = (1 600 - 11 1 €) (14 m) = Property of the state of the pro- The proper 13 - 12 12 + 1 1 24 111 বিচাল লেখিক, কেন্দ্ৰ কৰিছে কৰিছে কৰিছে 75 710 - 11 - 144 100 200 1000 11 3 61 6 7 5 * 1 100 TF GR.11.120 66 H 90 protest of 101 5 11 F 414 6 HB The world of the boundary of the Boundary 45 1 1 Dog THE GILLS ROLL SO TO SE Community of 69 10 40 172 111 The state of s Commence Sell 11. 1 1 1 110 11 mm = milliochiza (mm+ml. IM) P. 19. Jan 1, 177 50 15 00 ``` Figure 3.20. Radix-2 Section of Singleton's FFT. ``` P. C. C. S. ranged that and before the contraction of contr 61714045 2720= - 投資: = お手 + ようを含む 田 医内压 30.44 - 12.60 = 1847 - - Fred & 1 q_{i} = \prod_{j=1}^{m} q_{ij} = 1 - \frac{m_{ij}}{2} C \in G^{\frac{1+\alpha}{2}} They we have I to to to be to be 278 h= 用(株) = AK + H3 (基本数据 · 数字20 + 数 STATES. 海沟 = 一切,5*种过 + 四部 服物 = 一中0.与◆6 (+ 形) 2810= 治性治疗。 [원] = (원(남1+-원(남원)) ◆학1원(i PORTIE This is a Parkita etablisha មានគ្នា 28411≔ 海球的 = 部 医下孔 28500 F(0,1) = F(-+,0) 3286= AGAIN = AL + EU 2820= F(x) \otimes F(x) = F(x) + F(x) 18 = 88 + 8588b 高原烷 ()= 2900- JE 05.17.800 GC 78 100 ខ្ទាំក្រ≔ 183 - 1838 - 1914 291 Ba AF Oth.Lt.17Feto AD TO 100 2920= 65 YE 250 @930#f ``` Figure 3.21. Radix-3 Section of Singleton's FFT. rotation (twiddle) section to twiddle the data (the general twiddle factor section is shown in Figure 3.24). Using Eqs (3.144) and (3.145) the number of butterflies for factors of 3 is sN/3 and the number of complex twiddles is s(2N/3). Examining lines 2760-2870 in Figure 3.21 shows 4 real multiplications and 12 real additions. Each complex twiddle requires 4 real multiplications and 2 real additions. The expression for the factors of 3 section becomes: real mult = $$4(N/3)s + 4(2/3)Ns$$ = $4sN$ (3.149) real adds = $12(N/3)s + 2(2/3)Ns$ = $16sN/3$ (3.150) The factors of 4 section in Figures 3.22a and b include the twiddles in the butterfly section to minimize array indexing. The number of butterflies computed for t factors of 4 is tN/4 and the number of complex twiddles is t(3N/4) from Eqs (3.144) and (3.145). From lines 3210-3320 and 3540-3570 the number of real additions per butterfly is 16. Every complex twiddle requires 4 real multiplications and 2 additions. Combining the butterfly and twiddle operations results in the general expression for factors of 4: real mult = $$4(3N/4)t = 3tN$$ (3.151) real adds = $2(3N/4)t + 16(N/4)t$ = $3tN/2 + 8tN/2 = 11tN/2$ (3.152) The transform section for factors of 5 shown in Figure 3.23 computes the butterflies for the u factors of 5. There are uN/5 butterflies and u(4N/5) complex twiddles based on ``` The second of th 100 m 1 210 01 1140 911 411 en de la companya The state of the state of the state of Talketer (1944) (1951) (1951) (1951) (1951) (1951) (1951) f - f - j - j - And more of Fig. 1. The Rept Book of the Fill of the Control th 4.00 (j,l'), \ \forall \ (j) \equiv (l') the property 1 to 1 to 1 to 1 to 1 to 1 ிக்க≲் சி. சி. சி. ្រូ⊈ការ្⇔ារ 3116=0 0.1800\pm0 51 = 51 *55 f: t = f \in State State 3140= 140 FB = (100P - F100P ○書 章 息1★(1★), 頁 少生气的毒. ជាទី ១ ជា ស្វាំ ក ់ ស្តាំ!! 717.6 = 3120= SS = 52•S1 + 52•61 3180= 150 K1 = KK + F3PPM 包有原用量: 水色 声 本主 主 经定期的 3,216 == 李三声 机铁 医非二酸铁 391ñ= AMP = ARM + ARM 3830= 김대선 = 유리하기 - 유리인 3839#= គ.ទ = ១៨៦ + ១៨៦) 名牌 = 各体】(- 台)(名) 3640≔ 自体的 氧 经是 无食炉 3050 3860= 治治 = 3000 - 630 3270± TALES # 下位长年 4 中位300 P(28)11= 手控制 = 医特克氏 + 形代音: 建氯基甲甲二 P(P = P(Y)) + P(P(Y)) त्रांच कर 事(動) = P+5 () - R(1 3) ⊝3† H= 书信权》 = 种型 + 利那 1: 3+ = 1:11 - 1:14 Red Date TENNESS OF THE SECTION garage and the entrance with 3 415 1.15 the transfer of the soul con- to Pour Children Contract 44 to 2 to 11 to 12 15 (31.1) and 60 M 15 190 \mathbb{R}(\mathbb{R}(\xi)) = A Sense from period as a bulb of the interest 94 file= 事件手的方 台 智机工 未 有2的◆6主 ·指注[资本] 中 (14 对 *1 方) 三 (私)的 * (万 111= (事)物2000 / 医超电流 医电影物料器 वन्यत्वा 🕾 graphs of the state of the state of 7476 14 - 1. 12 18 1 11 1 2000 11-11- JE 01:18.860 80 10 150 -111 = 11 31765 1,6 10 a 15 = 10 + 10 15 dl. (8. Mb) 65 TO 130 3450# ``` Figure 3.22a. Radix-4 Section of Singleton's FFT. ``` garage and service in the service 10 1 = 11 10 = 200 tore part TE COLLEGE OF TENTER 可能,使有效 gradula ten Hallin i kali -..-.4,4102 51811 2 15 P 185 1 Carlot 1 4 1 4 1 用印度 等 独自 27611 Posticia ROPER = PUBL [P+44, V, pr] · 我说我 2000年 - 100 1987 San Salar · 探接 = 多5 + 多5PHF+ \mathbb{R}(\mathcal{L},\mathcal{L},\mathbb{C})\simeq IF GE.LE.HT 66 ID 150 33700 68 18 186 g_{i}(\Phi(\mathcal{E}_{\Sigma_{i}})) = G(i) · Ti = ED T Trabbetter His wife ★ February (C1 = 170 (C1) 等数单有数 37662 0.1 = 0.166 \pm 1.0 明月17年 · 特性 = 自由186 (1) [5] 后的复数的多位[1][1] 373 (** 50 TO 140 含含含的类: ``` Figure 3.22b. Radix-4 Section of Singleton's FFT. ``` -, -. - , L, és
(\mathbf{e}_{-1}^{-1}(\mathbf{e totalings. 500 74 - 1 5-1, 1 1 1 m + 1 + 2 + 2 + 2 + 2 + 4 4. - 9 24 5 \tilde{F}^{*} Billion Fred Land College 하다 나는 글 图图2011年 A DO D ASSET - PORCE Published Co. (1977) Compared to Ex- \pm 1.4465 2 1 1 7 4 \{x_{i}\}_{i=1}^{n} \in \{x_{i}\}_{i=1}^{n} 3-14- 1010 - 1012 1 3980= 3930.5 AK = 668+676 + 636+66 + 76 3940= 3956= THE # BEPARTS + TURNES + FP 息印色的中 유리 = 유전환역기원 + 유 전환 = 다음 3970= 我们出一批"种多"的"一个"和"相争"的 海海绵消毒 名(Y1) = 28 - 11) \mathbb{R}^{n_{1}n_{2}}(\mathbb{R}^{n_{1}}) គល់ទាន ៩ សាប ។ ខេត្ 4000= 100010 = 12 + 20 4016= B(84) = B8 - 9) 4 (()) () = AN = ALPMON + A SHOTE + AA BY = TUP™D + T P *CTP + TP 4630= 日十二 AM M★SP - 日 M ★ TR 4040= 400 \, \mathrm{fm} But as 700 Mossa - A Moss PA Address of Above that 406.0= 워크스 프 플로그 바다 467 fiz H (1:20 = 1:8 + 6 + 4角氨的= THE THE STATE OF A 46.5 ## - MA + # 1771da 4100= The state of s 41110 41619 41 31.2 The Colours of the the armade 11:11 4150=0 ``` Figure 3.23. Radix-5 Section of Singleton's FFT. Eqs (3.144) and (3.145). Examination of lines 3820-4090 in Figure 3.23 shows 16 real multiplications and 32 real additions are required per butterfly. Combining the butterfly and complex twiddle operations provides the general expression for real operation for factors of 5: real mult = $$16(N/5)u + 4(4N/5)u$$ = $32uN/5$ (3.153) real adds = $$32(N/5)u + 2(4N/5)u$$ = $8uN$ (3.154) where u is the number of factors of 5 in N. The general transform section for odd prime factors is more complex than the special factors sections. To aid in describing the number of real operations a p-radix is defined such that p is an odd prime greater than 5 with an associated "mi" integer power. The real operations count for the general section does not include additions associated with array indexing nor does it count multiplications and additions needed to recursively compute the sine and cosine terms. Based on the FORTRAN program for the odd factors shown in Figure 3.24a and b there are five sources of real operations for each p_i factor. The first source shown in lines 4310-4360 is computing the $(p_i-1)/2$ complex multipliers for the butterfly legs which require: real mult = $$4(p_i-1)/2 = 2(p_i-1)$$ (3.155) real adds = $$2(p_i-1)/2 = (p_i-1)$$ (3.156) ``` * to the # 1920. ថ្ងៃក្រុម សាស្រុម គេស្រុសសាស្រុសពីព + បានស្រុសពីព 4316= 346 កាស្រួស = កាស្រាស់ (• 11 − 11)កែមាមីរំ 4 1 - 6 = 10000± 1 = 1^{2} - 1 4346= 扩展 (K) 二 一 图 (C.) (C.) (C.) 4 - F = f(k,r)(k,r) = r + 5k(r,k) 4 = 3 + 1 4 - - - = 437 n= IR (J.LT.) + 50 TO 24) 4380= 350 81 = 88 4990= 82 = 88 + 85PMM AA = A(k) 4400= BB = B(KG) 4410= AK = AA 4420= 4438= BR = BB 4440= J = 1 k1 = k1 + kSPAN 4450= 82 = 82 - 8289 4480= 280 J = J + 1 4470= AT(D) = A(kD) + A(kE) 4490= 4498= AK = AT(J) + AK BT(t) = B(t) + B(t) 4500= 4510= BF = BT(J) + BK 4520= J = J + I \mathsf{AT}(\mathfrak{D}) = \mathsf{A}((1)) + \mathsf{A}((2)) 4530± BT(U) = B(X!) - B(X?) 4540= k1 = k1 + (588) 4550= 458.0= IF (K1.17.52) 58 TO 260 4670= 海付き (二年) 田 BIRKER = F1 45 - fr= 81 = 88 45.40= .g = ., + . 14. t = 1 4810= 3.1 = 31 + 35888 4820= 870 · 사용 = 12 - 12만원 4.4.3.0= 4340= 11 = 1 4550= Ab = AA 4,5-11= FF = FF 4.- ~ + = ទី(១ = ១.០ F_{1}^{0} = 0.0 4 - 9 1:= 4.09195 = 1 4700= 280 k = k + 1 ``` Figure 3.24a. General Factor Section of Singleton's FFT. ``` TE 051 19.750 (000 750 750 4:0° 0 = 4 1 = .: = . IF OUR CONTRACTOR 4 - 1 = to a Titiba e la companya tanàna ao amin'ny faritr'i Nobel no amin'ny tanàna mandritry ao amin'ny faritr'i Cam 4 1 1 1 E 49∂6=0 4-41:= 88 = JE + 1 4950= 300 C2 = 1.0 - CD 4980= S1 = SD MM = MIMP(PCPPN*PLIM) 4970= 50 TO 380 495 H= TE = E1 - YED+O1+SD+S1) 4990= 310 71 = 71 + (77)+81-81+81) 5010=0 5020=0 THE FOLLOWING THREE STATEMENTS COMPENSATE FOR TRUMCATION 5090=C ERROR. IF FOUNDED ARITHMETIC IC USED: THEY MAY 5040=0 BE DELETED. 5656=0 01 = 0.5/(C2++2+31++2) + 0.5 5030=0 %! = %1 • %1 5020=0 02 = 01 •03 5080=0 5090= 320 61 = 68 େ∂ = 31 5100= (i) = (i) + (ii) = (i) (i) (i) - · · / - 5120= 330 51 \pm 0 = 细胞体(= 数2★H1 - - 32★P()体: 9 · · · · · · 5150 = EE = EE + EIRBH 5160= IF (MM.LS.MT) 68 78 380 ab = 71 • 8 78 = 71 •08 + 81 • 8 5170= 5180= 519n= #28 = 21•k2 = 6k 50000 11 = 11 - 제 + 1 [편화 TRANSLAND PROPERTY OF THE € * † f = *5,- ;- 1 = TR 001.15.100 SD TD 010 C 2 11= IF (ME.LT.MIRAM) SO TO 340 5840≈ 马马克的金 ``` Figure 3.24b. General Factor Section of Singleton's FFT. new ractor p_1 , e.g., for N=28-7-4, the factor 7 requires (7-1)/2 complex multipliers. If N=196=7-7-4 there are still only (7-1)/2 complex multipliers needed. The second source of real operations is produced by computing the butterfly transmittances which require only real additions. From Eq (3.145) there are (mi)N/p_i butterflies required for the (mi) factors of p_i. For each butterfly there are (p_i-1)/2 transmittances which require only real additions. Examining lines 4470-4540 in Figure 3.24a show that the (p_i-1)/2 transmittances require 6 additions. Combining these results produces the general expression for the real additions: real adds = $$(6(p_i-1)/2) (mi) N/p_i$$ = $3N(mi) (p_i-1)/p_i$ (3.157) The third source of operations is produced by the $(p_i-1)^2/4$ butterfly transmittances which require real multiplications and additions. Lines 4510-4750 in Figure 3.24b show there are 4 real multiplications and 4 real additions needed. Combining this with the number of transmittances and butterflies gives: real mult = $$4((mi)N/p_i)((p_i-1)^2/4)$$ = $(mi)N(p_i-1)^2/p_i$ (3.158) real adds = $$(mi)N(p_i-1)^2/p_i$$ (3.159) The fem via concernation from computing the $(p_1-1)/2$ butterfly are being for such (ai)H/ p_1 butterfly. Examining lines 4800-4030 show that this function requires 4 real additions. Combining these results give the total as: real adds = $$((mi)N/p_i)4(p_i-1)/2$$ = $2(mi)N(p_i-1)/p_i$ (3.160) The final source of real operations is shown in Figure 3.24b lines 5120-5140 which performs the complex twiddle multiplications. From Eq (3.144) there are $(mi)N(p_i-1)/p_i$ complex twiddles which provide the general expression: real mult = $$4(mi)N(p_i-1)/p_i$$ (3.161) real adds = $$2(mi)N(p_i-1)/p_i$$ (3.162) Combining Eqs (3.145) through (3.162) give the expression for the real operations in the general odd factors section: real mult = $$\sum_{i=1}^{k} 2(p_i-1) + (mi)N(p_i-1)^2 p_i$$ + $4(mi)N(p_i-1)/p_i$ (3.163) real adds = $$\sum_{i=1}^{k} ((p_i-1) + 3N(mi)(p_i-1)/p_i + (mi)N(p_i-1)^2/p_i + 2(mi)N(p_i-1)/p_i + 2(mi)N(p_i-1)/p_i)$$ = $\sum_{i=1}^{k} (p_i-1) + 7N(mi)(p_i-1)/p_i + (mi)N(p_i-1)^2/p_i$ (3.164) Assuming that the sequence can be factored into $N = 2^r 3^s 4^t 5^u p_1^{m1} p_2^{m2} \dots p_k^{mk} \text{ the expressions for the total number of real operations can be written using}$ Eqs (3.140) through (3.164) as: real mult = $$2\text{rN} + 4\text{sN} + 3\text{tN} + 32\text{uN}/5$$ + $\sum_{i=1}^{k} (2(p_i-1) + (\text{mi})\text{N}(p_i-1)^2/p_i$ + $4(\text{mi})\text{N}(p_i-1)/p_i) - 4(\text{N}-1) + \text{KMULT}$ (3.165) real adds = $3\text{rN} + 16\text{sN}/3 + 11\text{tN}/2 + 8\text{uN}$ $$+ \sum_{i=1}^{k} ((p_i-1) + 7N(mi)(p_i-1)/p_i$$ $$+ (mi)N(p_i-1)^2/p_i) - 2(N-1) + KADD$$ (3.166) Notice that Eqs (3.165) and (3.166) have the corresponding 4(N-1) and 2(N-1) real
operations subtracted from the total multiplications and additions because the first stage of any FFT decimation-in-time does not require the "twiddle factors" (likewise with the last stage of an FFT decimation-in-frequency). These equations also include KADD and KMULT which are the real operations required to compute the recursive sine and cosine difference equation. Similar expressions and derivations were performed for the IMSL FFT and the author's FFT but due to the redundancy they were derived in Appendices G and E respectively. The general expression for real operations required by the IMSL mixed radix FFT (where N = 2^r 3^s 4^t p_1^{ml} p_2^{m2} ... p_k^{mk}) is given by: real mult = $$2rN + 4sN + 3tN$$ + $\sum_{i=1}^{k} (2(p_i-1) + 4(mi)N(p_i-1)/p_i$ + $(mi)N(p_i-1)^2/p_i) - 4(N-1) + KMULT$ (3.167) real adds = $3rN + 6sN + 1tN/2$ + $\sum_{i=1}^{k} ((p_i-1) + 8(mi)N(p_i-1)p_i$ + $N(mi)(p_i-1)^2/p_i) - 2(N-1) + KADD$ (3.168) where KMULT and KADD are the multiplies and adds needed to compute the sine and cosine terms. The general expression for real operations required by the author's mixed radix FFT (where $N = 2^r 3^s 4^t 5^u$) is given by: real mult = $$2\text{rN} + 4\text{sN} + 3\text{tN}$$ + $32\text{uN}/5 - 4(\text{N-1}) + 4\text{N}$ (3.169) real adds = $3\text{rN} + 16\text{sN}/3$ + $11\text{tN}/2 + 8\text{uN} - 2(\text{N-1}) + 10\text{N}$ (3.170) The real operations count for Singleton's mixed radix FFT is shown for N \(\) 200 in Figures 3.26 and 3.27. The operations count plotted includes only the additions and multiplications for the butterfly and twiddle factors in order to demonstrate the N² "upper bound" and the N log₂ N "lower bound". The N² upper bound occurs in the mixed radix FFTs when a prime number must be transformed. The N log₂ N lower bound is reached when N=2^m. In between the N² and N log₂ N bounds there are other "bounds" which are observed in Figure 3.25. The dashed lines represent numbers Multiplications vs N for Singleton's FFT (N<200). Figure 3.25. Figure 3.26. Additions vs N for Singleton's FFT (N<200). which are not primes, but are not highly factorable either. The dashed line approaches N log₂ N as N becomes more factorable. The relative efficiency of radix 2, 3, 4 and 5 FFTs is observed in Figures 3.27 and 3.28. These figures plot real operations counts for the mixed radix FFT for N less than 250 (where N is divisible by 2, 3, 4 and 5 only) and annotate the integer powers of 2, 3, 4 and 5. Notice that the fixed radix-2 and 4 provide the "lower bound" and the radix-3 and 5 provide the "upper bound" on the number of real operations which shows that integer powers of 2 and 4 require the least number of real operations and radix-3 and 5 the most. Other combinations of factors, i.e., N=120=5*4*3*2, have real operations counts which fall between the "bounds". 3.4.6 Memory Requirements for Mixed Radix FFTs. As in the case of fixed radix algorithms, a major consideration in selecting a particular mixed radix algorithm is the memory required to execute the FFT subroutine given the memory storage limitations of the computer to be used. The memory requirements for the three mixed radix FFTs is given here as a function of the sequence length N. Each algorithm has program and memory array requirements which are listed below. All the algorithms were compiled on the CDC Cyber system at AFIT and the program memory required by each sub-routine was determined from a "load map" generated by the Multiplications vs N for Multiples of 2,3,4 and 5. Figure 3.27. Additions vs N for Multiples of 2,3,4, and 5. Figure 3.28. command MAP, PART. This load map gives the size of all programs used during execution. The array storage requirements were determined from the FORTRAN coded programs and reference material provided with the IMSL and Singleton FFT subroutines. The general expression for memory requirements for each FFT subroutine (as a function of N) is given below. The subroutine written by the author requires 899 words of program memory. This subroutine (FFTMR) also requires the "calling" program to dimension 6 arrays (A, B, AT, BT, WKS, and WKC) to length N. (Use of these arrays is explained in Appendix E). This gives the total memory array required as: FFTMR memory = $$6N$$ (3.171) The mixed radix subroutine written by Singleton (FFTSNG) requires 1100 words of program memory. Four arrays (AT, BT, CK, SK) are dimensioned to equal the maximum prime factor of N. If there are no prime factors greater than 5 these arrays may be reduced to 1. A fifth array (NP) is dimensioned to at least one less than the product K of the square-free factors (see Glossary) of N. If N contains at most one square-free factor this array can be reduced to M + 1 where M is the maximum number of prime factors of N. Two more arrays, (XR, and XI) are dimensioned to length N. The total memory array storage becomes: FFTSNG memory = $2 \cdot N + 4 \cdot MAXPF + (K-1 \text{ or } M+1)$ (3.172) where N = Sequence length MAXPF = Maximum prime factor of N K . = Product of square-free factors M = Maximum number of prime factors NOTE: K-l or M+l is selected in Eq (3.172) based on the number of square-free factors of N as described in the preceding paragraph. The mixed radix subroutine (FFTCC) provided as part of the IMSL package on the CDC Cyber system requires 1061 words of program memory. A complex array (A) must be dimensioned to length N and two other arrays (IWK and WK) are dimensioned to length "IWORD", where: IWORD = $$3 \cdot M + 3 + MAX (4 \cdot M + 7 + 6 \cdot K,$$ $KB + 1 + 2 \cdot JK)$ (3.173) To define the quantities M, K, KB and JK a prime factor decomposition of N is required such that: $$N = f_1^2 f_2^2 \dots f_{KT}^2 f_{KT+1} \dots f_{KT+JT}$$ where each f_j is a prime number (other than 1) and $f_i \neq f_r$ given that: i, $$r \ge KT + 1$$ $KT \ge 0$; $JT \ge 0$ Then: The state of the $$M = 2KT + JT \tag{3.174}$$ is the number of prime factors in N and: $$K = \max_{1 \leq j \leq KT + JT} (f_j)$$ (3.175) is the largest prime factor of N. KB and JK are defined as follows: $$JK = 1 \cdot f_1 \cdot f_2 \dots F_{KT}$$ (3.176) where JK = 1 if KT = 0 and $$KB = N/(JK)^2 - 2$$ (3.177) Once M, K, JK, and KB are determined they are substituted into Eq (3.173) to determine the value of IWORD, the actual work storage requirement. Counting only the arrays for the work vectors (IWK and WK) and the data arrays (A and B) gives the total array memory required for the IMSL FFT: Memory = $$2 * N + IWORD * 2$$ (3.178) An example of N=2100 is used to demonstrate the use of Eqs (3.172) through (3.178) in computing the memory array required by the IMSL and Singleton subroutines. For N=2100 the factors are $2^2 \cdot 5^2 \cdot 3 \cdot 7$ for which FFTSNG memory becomes: N = 2100 = sequence length MAXPF = 7 = maximum prime factor in N K = 3.7 = 21 = product of the square free factors M = 6 = maximum number of prime factors Using Eq (3.172) the expression for FFTSNG memory array is given by $$2 \cdot 2100 + 4 \cdot 7 + (20 \text{ or } 7) = 4248$$ (3.179) NOTE: There are two square-free factors 3 and 7, therefore choose 20 for the last term of Eq (3.179). If this subroutine were used on the Cyber 74 computer, the program memory is added to the memory array to give a total memory of: memory = $$4248 + 1100 = 5348$$ words (3.180) The same example of N=2100 is applied to the IMSL memory equation where: $$N = f_1^2 f_2^2 \dots f_{KT}^2 f_{KT+1} \dots f_{KT+JT}$$ $$= 2^2 \cdot 5^2 \cdot 3 \cdot 7 = 2100$$ (3.181) From Eq (3.174) the expression for M becomes: $$M = 2 \cdot KT + JT = 2 \cdot 2 + 2 = 6 \tag{3.182}$$ which is the number of prime factors in N. The largest prime factor in N is given by Eq (3.175): $$K = \max_{\substack{1 \leq j \leq KT+JT}} (f_j) = 7$$ (3.183) JK, which is the product of the "square-factors", is: $$JK = \underline{1} \cdot f_1 \cdot f_2 \dots f_{KT} = 2.5 = 10$$ (3.184) and KB is $$KB = N/(JK)^2 - 2 = 2100/100 - 2 = 19$$ (3.185) The results of Eq (3.181) through (3.185) provide the size of the work vector IWORD given by Eq (3.173). IWORD = $$3M + 3 + MAX (4M + 7 + 6K, KB+1+2JK)$$ = $18 + 3 + MAX (24 + 7 + 42, 19+1+20)$ = $21 + MAX (73, 40) = 94$ Substituting IWORD=72 and N=2100 into Eq (3.178) gives the memory array for FFTCC as: $$2N + 2IWORD = 4200 + 94 = 4294$$ (3.186) Using this subroutine on the Cyber 74 computer requires 1061 words of program memory which makes the total memory required equal to: 4294 + 1061 = 5355 words (3.187) For this length N=2100 sequence the Singleton FFTSNG used less memory (5348) than the IMSL FFTCC (5355). The array memory requirements given by Eq (3.172) and (3.178) are plotted in Figures 3.29 and 3.30 for M less than 200. It is readily observed that selective adjustment of N to be highly factorable (composite) minimizes the memory required by subroutines FFTCC or FFTSNG. As an example of how prime numbers increase the memory array sizes, consider N = 2099 for each algorithm. For FFTSNG the variables are MAXPF = 2099, K = 2099, and M = 1. Since N = 2099 contains only one square-free factor the array NP can be dimensioned to M+1=2. The memory array for FFTSNG becomes: 2N + 4 • MAXPF + 2 = 12594 words of memory array Adding the program memory of 1100 yields the total memory required to execute the FFTSNG on the Cyber 74: memory = $$12594 + 1100 = 13694$$ (3.188) For the IMSL FFT the variables are K = 2099, JK = 1, KT = 0, JT = 1, KB = 2097, and M = 1. The expression for IWORD becomes: IWORD = $$3M + 3 + MAX(4M+7+6K, KB+1+2JK)$$ = $3 + 3 + MAX(12605, 2100) = 12611$ The total memory assuming execution on the Cyber 74 system is: $2N + 2 \cdot IWORD = 2 \cdot 2099 + 2 \cdot 12611 = 29420$ (3.189) which is 5.5 times larger than the total memory for N=2100. (<200) for Singleton's FFT. Memory Array vs N Figure 3.29. Figure 3.30. Memory Array vs N (<200) for IMSL's FFT. ## 3.5 Fourier Transforms Using Fast Convolution Algorithms The paper by Cooley and Tukey, 1965, had a major
impact on digital signal processing by stimulating the development and wide use of the FFT. Recently several new ideas have been used to compute the DFT which have impacted digital signal processing. In 1968 it was observed by Rader that computation of the DFT could be changed to circular convolution by rearranging the data when N is prime. Now, if given a fast way to do circular convolution, one has a fast DFT method. Winograd showed the minimum number of multiplications for circular convolution of primes and prime power length sequences. He then proposed that these high speed prime power convolutions be "nested" into long transforms to minimize multiplications. The Winograd nested algorithm has been studied and programmed (Silverman, 1977; McClellan and Nawab, 1979; Zohar, 1979) for computing the DFT of complex valued sequences. An alternative to the Winograd algorithm was proposed by Kolba and Parks and combined the concept of fast convolution with conventional DFT techniques to give another efficient DFT implementation. Kolba and Parks' prime factor algorithm (PFA) uses the same reordering technique as the Winograd Fourier transform algorithm (WFTA). The original PFA (Kolba and Parks, 1978) has been modified (Burrus and Eschenbacher, 1980) so it can transform the same sequence lengths as the WFTA. This section presents the theory of the WFTA "small-N" algorithms, the data reordering (which is the same for PFA and WFTA), the PFA theory, the real operations count, and the memory array requirements for both PFA and WFTA. Since both algorithms follow a similar development the conversion of a DFT to circular convolution and data reordering are only presented once and apply to both algorithms. 3.5.1 Converting a DFT to Circular Convolution. To convert the DFT expression to a circular convolution the DFT matrix [W] must be "mapped" into the circular convolution matrix [W $_{\rm C}$]. The mapping between these two matrices, and hence the basis for the WFTA and PFA was developed by Rader in 1968. Rader showed that if "N is prime, there is some number g, not necessary unique, such that a one-to-one mapping from the integers i = 1, 2, ..., N-1 to the integers j=1,2,...,N-1 is given by: $$j = ((g^i))_N$$ (3.190) where the notation $((x))_N$ implies x modulo N." The example of N=7 and g=3 using the mapping of Eq (3.190) gives: The number g is referred to as a "primitive root" in number theory. The mapping of Eq (3.190) provides the convolution matrix $[W_C]$ from the DFT matrix [W]. Examples of this mapping are extensively treated in the references (Silverman, 1977; Kolba and Parks, 1977) and are not repeated in this paper. A brief example of using the results of the convolution matrix is presented to aid in developing the small-N algorithm operations count. Consider the following 3-point DFT written in matrix notation as: $$\begin{bmatrix} x(0) \\ x(1) \\ x(2) \end{bmatrix} = \begin{bmatrix} w^0 w^0 w^0 \\ w^0 w^1 w^2 \\ w^0 w^2 w^1 \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \end{bmatrix}$$ (3.191) where W_3 is assumed and $W_3^4 = W_3^1$. The circular convolution is given by: $$\begin{bmatrix} \overline{X}(1) \\ \overline{X}(2) \end{bmatrix} = \begin{bmatrix} w^1 & w^2 \\ w^2 & w^1 \end{bmatrix} \begin{bmatrix} x(1) \\ x(2) \end{bmatrix}$$ (3.192) which provides $\overline{X}(1)$ and $\overline{X}(2)$. Then the DFT in Eq (3.191) can be rewritten using Eq (3.192) to give: $$X(0) = W^{0}(x(0) + x(1) + x(2))$$ $$X(1) = W^{0}x(0) + \overline{X}(1)$$ $$X(2) = W^{1}x(0) + \overline{X}(2)$$ (3.193) Using similar techniques to the one presented here, convolution expressions to perform DFTs have been developed for N = 2, 4, 5, 7, 8, 9 and 16. 3.5.2 <u>Meordering the Data Arrays</u>. Implementing the WFTA or the PFA into a useful form involves making long transforms from the short, fast-convolution transforms for 2, 3, 4, 5, 7, 8, 9, and 16. The general idea is "to convert a one-dimensional length $N = M_1 M_2 \dots M_i$ transform into a i-dimensional transform requiring computation of i shorter length M_k transforms for $k = 1, 2, \dots, i$." (Kolba and Parks, 1977). The mapping from one-dimension to i-dimensions is based on the Chinese Remainder Theorem which requires relatively prime factors $M_1 M_2 \dots M_i$. The example for two mutually prime factors given by Kolba and Parks, 1977, is presented here because the mapping is common to both WFTA and PFA. In the DFT: $$X(k) = \sum_{N=0}^{N-1} x(n) w^{Nk}$$ (3.194) the index n of the input sequence is referred to as the input index, and the index k of the output sequence X(k) is called the output index. Mapping from one-to-two dimensions maps the input index n into a pair of indices (n_1, n_2) . $$n_1 = r_1 n \mod M_1$$ $n_1 = 0_1 \dots, M_1 - 1$ $r_1 = M_2 \mod M_1$ $n_2 = r_2 n \mod M_2$ $n_2 = 0, \dots, M_2 - 1$ $r_2 = M_1 \mod M_2$ The output index is $$k_1 = k \mod M_1$$ $k_1 = 0, \ldots, M_1-1$ $$k_2 = k \mod M_2$$ $k_2 = 0_1 \ldots, M_2-1$ The inverse mapping from two-to-one dimension for the output index is: $$k = (s_1k_1 + s_2k_2) \mod N$$ (3.195) where $$s_1 = 1 \mod M_1$$ and $s_2 = 0 \mod M_1$ $$s_1 = 0 \mod M_2$$ and $s_1 = 1 \mod M_2$ While the same inverse mapping in Eq (3.195) could be used for the input index n, it is more convenient (Kolba and Parks, 1977) to use: $$n = (M_2 n_1 + M_1 n_2) \mod N$$ (3.196) When the mappings in Eqs (3.195) and (3.196) are used the DFT becomes: $$x(k_1,k_2) = {M_1-1 \atop \Sigma} {M_2-1 \atop \Sigma} \times (n_1,n_2) {W_{M_2}^2} {W_{M_1}^1}$$ (3.197) At this point the WFTA and PFA approach the implementation of Eq (3.197) differently as seen below. algorithm for computing the DFT was proposed by Winograd in July 1975. The WFTA has properties such that the number of real additions remained at the FFT level while the number of real multiplications necessary to evaluate the DFT was reduced (Silverman, 1977). This paper will not derive the "small-N" algorithms. Readers interested in derivation of the WFTA are referred to the articles which extensively treat the topic (Winograd, 1976; Silverman, 1977; Kolba and Parks, 1977; Zohar, 1979). Winograd's proof started with the N by N matrix with elements: which can be decomposed to: $$Q_{N} = O_{N} D_{N} I_{N}$$ (3.199) where I_N is a u by N incidence matrix with values of 0, 1, and -1 only, D_N is a u by u diagonal matrix, and O_N is an N by u incidence matrix (Silverman, 1977). The decomposition of Q_N is possible with large values of u relative to N (i.e., $u=N^2$). Winograd solved the more difficult problem of decomposing $Q_N=O_N$ D_N I_N given an incidence matrix which has dimension u smaller than N^2 . Winograd applied field theory to give solutions where u approximately equals N for small values of N, where N = 2, 3, 4, 5, 7, 8, 9, and 16 (Silverman, 1977). Not only did Winograd prove the minimum multiplication count for the above small-N DFTs but he also proposed a special structure of Eq (3.197) using Eq (3.199). The two dimensional transform in Eq (3.197) may be implemented by first calculating M₁ length M₂ DFTs: $$y(n_1,k_2) = \sum_{n_2=0}^{M_2-1} x(n_1,n_2) w^{n_2k_2}$$ (3.200) and then calculating M_2 length M_1 DFTs: $$x(k_1,k_2) = \sum_{n_1=0}^{M_1-1} y(n_1,k_2) w^{n_1k_1}$$ (3.201) Using the notation of Eq (3.199) the M₁ short transform can be written in terms of the input additions $i^{(1)}$, output additions $0^{(1)}$, and multiplications $d^{(1)}$. The length M₂ transform uses $i^{(2)}$, $0^{(2)}$, and $d^{(2)}$ (Kolba and Parks, 1977). The Eq (3.200) becomes: $$y(n_1,k_2) = \frac{u_2^{-1}}{r=0} 0_{k_2}^{(2)} d_r^{(2)} \frac{M_2^{-1}}{n_2=0} i_{rn_2}^{(2)} \times (n_1,n_2)$$ (3.202) $X(k_1,k_2)$ in Eq (3.201) is a length M_1 transform of $y(n_1,k_1)$ which can also be written: $$X(k_1,k_2) = \sum_{m=0}^{u_1-1} 0_{k_1^m}^{(1)} d_m^{(1)} \int_{n_1=0}^{m_1-1} i_{mn_1}^{(1)} y(n_1,k_2)$$ (3.203) Substituting Eq (3.202) into Eq (3.203) gives: $$x(k_{1},k_{2}) = \frac{u_{1_{\Sigma}}^{-1}}{m=0} 0_{k_{1}}^{(1)} d_{m}^{(1)} d_{m}^{1_{\Sigma}^{-1}} i_{mn_{1}}^{(1)}$$ $$x \frac{u_{2_{\Sigma}}^{-1}}{r=0} 0_{k_{2}}^{(2)} d_{r}^{(2)} \frac{M_{2_{\Sigma}}^{-1}}{n_{2}=0} i_{rn_{2}}^{(2)} x(n_{1},n_{2})$$ (3.204) The order of summation may be interchanged to "nest" the multiplications in the center which gives Eq (3.204) rewritten as: $$x(k_{1},k_{2}) = \frac{u_{2}^{-1}}{r=0} o_{k_{2}r}^{(2)} \frac{u_{1}^{-1}}{m=0} o_{k_{1}m}^{(1)} d_{m}^{(1)} d_{r}^{(2)}$$ $$x \frac{M_{1}^{-1}}{n_{1}=0} i_{mn_{1}}^{(1)} \frac{M_{2}^{-1}}{n_{2}=0} i_{rn_{2}}^{(2)} x(n_{1},n_{2})$$ (3.205) Eq (3.205) is the form that was implemented into FORTRAM code (McClellan and Nawab, 1979) and listed in Appendix H. As an example of the "nesting" structure for the WFTA consider the case of N=3 given in Eqs (3.190) through (3.192). First, let $$\begin{bmatrix} \overline{X}(1) \\ \overline{X}(2) \end{bmatrix} = \begin{bmatrix} M_1/2 + M_2/2 \\ M_1/2 + M_2/2 \end{bmatrix}$$ (3.206) then equating Eqs (3.206) and (3.191) gives: $$\begin{bmatrix} \overline{X}(1) \\ \overline{X}(2) \end{bmatrix} = \begin{bmatrix} M_1/2 + M_2/2 \\ M_1/2 - M_2/2 \end{bmatrix} = \begin{bmatrix} x(1)W^1 + x(2)W^2 \\ x(1)W^2 + x(2)W^1 \end{bmatrix}$$ (3.207) Substituting, $$w^{1} = \exp(-j2\pi/3) = -1/2 - j(\sqrt{3}/2)$$ $$w^{2} = \exp(-j4\pi/3) = -1/2 + j(\sqrt{3}/2)$$ into Eq (3.207) provides: $$M_{1}/2 + M_{2}/2 = -x(1)/2 - j(x(1)\sqrt{3}/2)$$ $$-x(2)/2 + j(x(2)\sqrt{3}/2)$$ (3.208) $$M_{1}/2 - M_{2}/2 = -\pi(1)/2 + j(\pi(1)\sqrt{3}/2)$$ $$-\pi(2)/2 - j(\pi(2)\sqrt{3}/2)$$ (3.209) Solving for M_1 and M_2 gives: $$M_1 = -(1/2)(x(1) + x(2))$$ $$M_2 = -j(\sqrt{3}/2)(x(1)-x(2))$$ (3.210) For the algorithm to be used in Winograd's algorithm the multiplications by $W^0=1$ must be accounted for and minimized. This is accomplished by modifying the length 3 DFT to: $$a_{1} = x(1) + x(2)$$ $$a_{2} = x(1) - x(2)$$ $$a_{3} = x(0) + a_{1}$$ $$M_{1} = (-1/2 - 1)a_{1} = -(3/2)a_{1}$$ $$M_{2} =
-j(\sqrt{3}/2)a_{1}$$ $$M_{3} = W^{0}a_{3} = a_{3}$$ $$C_{1} = M_{3} + M_{1}$$ $$x(0) = M_{3}$$ $$x(1) = C_{1} + M_{2}$$ $$x(2) = C_{1} - M_{2}$$ (3.213) Eqs (3.211) through (3.213) result in 2 multiplications, 1 multiplication by W^0 , and 6 additions which can now be expressed in the $X = 0 \cdot D \cdot I \cdot x$ notation as: $$\begin{bmatrix} \mathbf{x}(0) \\ \mathbf{x}(1) \\ \mathbf{x}(2) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 1 & -3/2 & 0 \\ 1 & 0 & -j\sqrt{3}/2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{x}(0) \\ \mathbf{x}(1) \\ \mathbf{x}(2) \end{bmatrix}$$ (3.214) and then rewritten into summations as: $$X(k) = \begin{matrix} u-1 & N-1 \\ 0 & d_r & d_r \\ r=0 \end{matrix} i_{rn} x(n)$$ (3.215) The fast convolution cases for N=2,4,5,7,8,9, and 16 were developed similar to the method used for N=3 above. The explicit equations for these cases provided the small-N operations count shown in Table 3.6 which is used in computing the real operations count as a function of T for the WFTA. 3.5.4 The Prime Factor Algorithm Theory. An alternative to the nested algorithm proposed by Winograd was developed by Kolba and Parks. Because of the algorithms structure it is called the prime factor algorithm (PFA) and uses a modified version of Winograd's high-speed convolution technique. Converting the DFT to circular convolution and reordering the data arrays for the PFA is identical up through Eq (3.197) where $$W_{M_1} = \exp(-j2\pi/M_1)$$, $W_{M_2} = \exp(-j2\pi/M_2)$, with M_1 and M_2 relatively prime. The transform in Eq (3.197) may be performed by calculating M_1 length M_2 DFTs: $$y(n_1,k_2) = \sum_{n_2=0}^{M_2-1} x(n_1,n_2) w^{n_2k_2}$$ (3.216) then calculating M_2 length M_1 DFTs: $$X(k_1, k_2) = \sum_{n_1=0}^{M_1-1} y(n_1, k_2) w^{n_1 k_1}$$ (3.217) The expressions in Eqs (3.216) and (3.217) are implemented as short DFTs instead of "nested" operations as shown in Eq (3.205). TABLE 3.6 SMALL-N OPERATIONS COUNT FOR WFTA | N | Mult | Mult
by W ^o | Adds | |----|------|---------------------------|------| | 2 | 0 | 2 | 2 | | 3 | 2 | 1 | 6 | | 4 | 0 | 4 | 8 | | 5 | 5 | 1 | 17 | | 7 | 8 | 1. | 36 | | 8 | 2 | 6 | 26 | | 9 | 12 | 1 | 44 | | 16 | 10 | 8 | 74 | For both algorithms structure the small-N equations are the same, only the implementation is different. In the case of the PFA structure the small-K algorithms are modified to permit a "shift operation" instead of a multiplication by 1/2. For the N=3 example Eqs (3.211) through (3.213) are modified to: $$a_1 = x(1) + x(2)$$ $a_2 = x(1) - x(2)$ $a_3 = x(0) + a_1$ (3.218) $M_1 = -(1/2)a_1$ $M_2 = -j(\sqrt{3}/2)a_2$ (3.219) $C_1 = x(0) + M_1$ $x(0) = a_3$ $x(1) = C_1 + M_2$ $x(2) = C_1 - M_2$ (3.220) Eqs (3.218) through (3.220) have 1 multiplication, 1 shift (multiplication by 1/2) and 6 additions. Similar small-N DFTs result for N=2,4,5,7,8,9 and 16 to produce the operations count for PFA small-N algorithms shown in Table 3.7 (Burrus and Eschenbacher, 1980). (Complex valued sequences require the count in Table 3.7 to be doubled.) If the implementation of the PFA does not use "shifts" the multiplication count must be adjusted to reflect the multiplications by 1/2. The original FORTRAN program written (Kolba, 1977) did not include the factor of 16. Later modifications (Burrus and Eschenbacher, 1980) TABLE 3.7 PFA SMALL-M DFT OPERATIONS COUNT | \underline{N} | Multiplies | Shifts | Adds | |-----------------|------------|--------|------| | 2 | 0 | 0 | 2 | | 3 | 1 | 1 | 6 | | 4 | 0 | 0 | 8 | | 5 | 4 | 2 | 17 | | 7 | 8 | 0 | 36 | | 8 | 2 | 0 | 26 | | 9 | 8 | 2 | 49 | | 16 | 10 | 0 | 74 | | | | | | NOTE: For complex sequences the values in the table must be doubled. included the factor of 16 which made the PFA capable of transforming the same dequence lengths as the WFTA. It should be noted that neither FORTRAM version implemented the "shifts" which increased the number of real multiplications. 3.5.5 Real Operations for WFTA. To use the WFTA the N length sequence must be factorable into R relatively prime factors N₁ N₂ ... N_R where each factor corresponds to one of the Winograd small-N algorithms for 2,3,4,5,7,8, 9 and 16. It has been shown (Silverman, 1977) that the number of real multiplications is a function of the factors of N. To aid in the development of the number of real operations the following terms are defined: M_r = number of real multiplications in factor N_r A_r = number of real additions in factor N_r N_r = r^{th} factor of N Winograd proved that the D $_{\rm N}$ matrix is an M $_{\rm R}$ by M $_{\rm R}$ diagonal matrix with only 0, 1, or -1 for diagonal entries and 0 $_{\rm N}$ and I $_{\rm N}$ are N by M $_{\rm N}$ and M $_{\rm N}$ by N incidence matrices, respectively. To evaluate the nested multiplications of D $_{\rm N}$ (Silverman, 1977) requires: $$NMULT = M_1 M_2 ... M_R$$ (3.221) which is the real multiplications count for real valued sequences. For complex valued transforms Eq (3.221) must be multiplied by 2. All previous multiplications counts (Winograd, 1976; Kolba and Parks, 1977; Silverman, 1977) use only Eq (3.221) as the source of real multiplications for the WFTA. The multiplications in Eq (3.221) are all performed by the MULT subroutine in Figure 3.31. Other real multiplications are required in the WFTA for computing the multiplier coefficients and determining the input and output permutation vectors of the INISHL subroutine in Figure 3.31. The DFT multiplier coefficients are computed in lines 1450-1510 of the WFTA listed in Appendix H and require: real mult = $$3 * NMULT$$ (3.222) where N MULT was computed in Eq (3.221). Determining the output permutation vector in lines 2080-2170 requires: real mult = $$4 * N$$ (3.223) where N is sequence length to be transformed. Combining Eqs (3.222) and (3.223) provides the number of real operations required for initializing the WFTA. Subsequent transforms of the same sequence length do not require initialization. The first complex transform of length N using the WFTA requires: real mult = 2 * NMULT + 3 * NMULT + 4 * N (3.224) Subsequent complex transforms require: real mult = $$2 * NMULT$$ (3.225) Counting the number of real additions is more complicated because the factorization order of N will change the real additions count (Silverman, 1977). For a given factorization of N = N_1 N_2 ... N_R the number of real additions Figure 3.31. Flow Control in WFTA Program. required to evaluate a complex valued magnetic can be determined from the INICHA initialization subscribe and the WEAVE1 and WEAVE2 subsolutions in Figure 3.31. First the real additions from the "WEAVES" can be developed by considering the special case of N = $\rm N_1 N_2$. $\rm N_1$ is defined as the "innermost" factor and $\rm N_2$ is the "outermost" factor. For two factors of N Silverman has shown the number of real additions to be: $$A(2) = N_1 A_2 + M_2 A_1$$ (3.226) (Recall A_2 equal real adds to evaluate factor N_2 and M_2 equal real multiplies to evaluate N_2 .) Now consider $N = N_1 \ N_2 \ N_3$ where $(N_1 \ N_2)$ is considered to be the "innermost" factor. The number of real additions becomes: $$A(3) = (N_1 N_2)A_3 + M_3 A(2)$$ $$= N_1 N_2 A_3 + M_3 N_1 A_2 + M_3 M_2 A_1$$ (3.227) By iterative substitution the number of additions for $N = N_1 N_2 N_3 N_4$ becomes: $$A(4) = (N_1 N_2 N_3) A_4 + M A(3)$$ $$= N_1 N_2 N_3 A_4 + M_4 N_1 N_2 A_3$$ $$+ M_4 M_3 N_1 A_2 + M_4 M_3 M_2 A_1$$ (3.228) Eqs (3.226) through (3.228) are used to write a compact expression for the number of real additions needed in the WEAVE subroutines: $$A(R) = 2 \left(\frac{R}{1} - \frac{R-1}{(-1)^{n}} \right) \left(\frac{R}{r} \right) \left(\frac{R}{1} - \frac{M_{i}}{(-1)^{n}} \right)$$ $$(2.229)$$ The expression in Eq (3.229) represents only real additions used in WEAVE1 and WEAVE2. Other additions are required by the INISHL initialization subroutine to index the DIT coefficient array and compute the output index vector. The DFT coefficient array is indexed with a J counter in line 1500 of the FORTRAN WFTA program in Appendix H. This part of the INISHL subroutine requires NMULT real additions. The input index array INDX1 requires another J counter in line 1720 which uses N real additions. The output index array INDX2 uses a J counter in line 2160 which uses N real additions. Also the INDX2 computation requires 8N real additions in line 2120. Totaling the real additions in the initialization subroutine gives: real adds = $$NMULT + 10N$$ (3.330) Adding the results of Eq (3.330) to Eq (3.229) gives the total additions needed to transform an N length sequence for the first time. Subsequent transforms at the same N sequence length requires only the number of adds in Eq (3.229). The FORTRAN WFTA program written by McClellan and Nawab, 1979, decreased the number of real multiplications for N=9 from 13 to 11 while the number of additions remained constant at 44. Modifying Table 3.6 to reflect the new multiply count for N=9 gives the McClellan and Nawab real operations seamt for the or distribution it is an Table 3.8. Using Eqs (3.229) and (3.330) with Table 3.8 gives the number of real operations for all permissible WPTV sequence lengths shown in Table 3.9 and b. The columns labeled "REAL MULTI" and "REAL ADDI" represent the operations for the initial transform of length N. The columns labeled "RFAL MULT" and "REAL ADD" give the operations count for subsequent transformations of the same sequence length. The number of real operations are plotted as a function of N in Figures 3.32 and 3.33. These graphs demonstrate the large reduction possible after the WFTA has been initialized for an N length sequence. 3.5.t Memory Requirements for WFTA. The FORTRAN subroutine WFTA listed in Appendix H requires 2348 words of program memory when compiled for the CDC Cyber 74 computer.
The memory array requirements are given by: XR, XI, INDX1, INDX2: length N COEF, SR, SI: length NMULT=M $_1$ M $_2$ M $_3$ M $_4$ which is the number multiples recommed by the factors of N. NMULT is listed in Table 3.9a and b. CO3, CO4, CO5, CO3, CO16, CDA, CDB, CDC, CDD: Total of 88 The original version of WFTA dimensioned INDX1, INDX2, COEF, SR, and SI to their maximum possible lengths of 5040, 5040, 10692, 10692, and 10692 respectively. This made the memory TABLE 3.8 McCLELLAN AND NAWAB'S WFTA REAL OPERATIONS FOR THE SMALL-N ALGORITHMS | N | <u>M(N)</u> | <u>A(N)</u> | |----|-------------|-------------| | 2 | 2 | 2 | | 3 | 3 | 6 | | 4 | 4 | 8 | | 5 | 6 | 17 | | 7 | 9 | 36 | | 8 | 8 | 26 | | 9 | 11 | 44 | | 16 | 18 | 74 | TABLE 3.9a REAL OPERATIONS AND MEMORY FOR MCCLELLAN AND NAWAB WFTA | | 6 M 2 W | Sign (Mill) | +4 (O) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C | a 60 % 60 60 1 | e e e e e e e e e e e e e e e e e e e | ર્જ દેવાદ્વન | |------------------------------|-------------------------|--|---|---|---|--| | 78 05 U
70 40 74 | OF COME OF STATE | u to trace to units and to the second of | S. J. O. B. O.
C. G. F. S.
G. T. W. W. C. | 10 / 10 f | 0
एक सम्बद्धाः
संकासम्बद्धाः | \$100 62 F.00 E | | ना है
कि हो
कि व
11 | च (V हा है
पूर्व (4) | i i i i i i i i i i i i i i i i i i i | a a a week | lad train to
train
eachtridean | or Long W
was a second to the
way on dig to the | चा ५ ५ । ६५ ८४८
५ १ - १ १ १ १
५४ १८ ५ १० १ ५ ४ १ १४
१४ १४ १४ | | TACE | · . | | N. 1 11 | 131 . 4 | and we do to a | record to come to the control of | | 1200mm
1100mm
1100mm | 1 0 % C | 1 (ਹੋੜ ਹੈ।
ਹਵਾਵਿਧ ਵਾਲੇ | 6. | No. of the | an record | 5시하고요ㅎㅎ
2 M : 실 : 커스
- 현 - 현 - 런 전
- 현 - 현 - 런 런 인 편 | | TEMP
WHATE | 44 (O 10) | ili 1931 kili
Nasa (Lago) | ११ (त. १८ १८)
त्रीत्र प्रतिकृतिक स्थापन | 3 (G) - 3
30 / 14
3 41 41 (G) (G) | 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | m + 2 0 0 0 000 | | ~ | 0.8 - 1 | | 45 O 31 | | 4.5.312.63 | 0.25.0000 | TABLE 3.9b REAL OPERATIONS AND MEMORY FOR MCCLELLAN AND NAWAB WFTA | -
-
-
-
-
-
-
- | 41 M 44 | E | | | 9 | TO BE SEEN | | |--------------------------------------|---|---|--|-------------------------------
---|---|--| | > 7 C | 61 (7.28)
P. (2.38)
F. (1.18) | (0) (0)
(0) (0)
(0) (1) | ्र है ।
(१) है
(१) जो पूर्व देवा | | | | The contract of o | | 22 (1)
24 (1)
24 (1) | (, , a | to consider the second | . (0 .
19 - 4 .) t
19 () . (| Orio en
Orio en
Orio en | *** | C (2) (3)
(2) (3) (4)
(4) (3) (4)
(4) (3) (5) (4)
(4) (4) (4) (4) (7) | | | | 0 () () () () () () () () () (| of the state t | | e Constant | F (4 (1)) 1 (1) | ्र
(क्ष्म (क्ष्म ()) | | | 1 i | 8000 | | (U (U)
(r) + (
(T) (r) | | | | | | | - 1 | J (6 (12) | | | | | | | • | | n () | | | or en | · , | | Figure 3.32. Real Multiplications for WFTA. Figure 3.33. Real Additions for WFTA. Figure 3.34. Memory Comparison Between Modified and Original WFTA. array storage very large even for the shortest sequence lengths: memory array = $$2N + 2*5040 + 3*10692 + 88$$ = $2N + 42244$ (3.331) The memory arrays INDX1, INDX2, COEF, SR, and SI were variably dimensioned by the author's version of WFTA in Appendix H. This reduced the memory arrays required to: memory array = $$4N + 3NMULT + 88$$ (3.332) The results of Eq (3.332) are listed in Table 3.9a and b for all values of N. A comparison of the memory required by Eqs (3.331) and (3.332) is plotted in Figure 3.34 which shows the drastic savings in memory storage by using the variable dimensions. The "cost" of variable dimensions is more work for the user of WFTA because the dimensions must be passed to the WFTA subroutine using more arguments in the subroutine call. The original version required: CALL WFTA (XR, XI, N, INIT, IERR) The modified WFTA call is: CALL WFTA (N, XR, XI, INIT, IERR, SR, SI, COEF, M, INDX1, INDX2) where M = NMULT. The increased complexity of the second call is worth the savings of memory arrays. 3.5.7 Real Operations for the PFA. The real operation sources for the PFA are computed from reordering the data and performing the small-N DFTs. The unscrambling constant which maps the PFA result from arrays X and Y to arrays A and B requires N real additions and no multiplications. The second source, computing the small-N DFTs using fast convolution, has been proven (Kolba and Park, 1977) for two factors (M_1 M_2) to be: real mult = $$2(M_1 u_2 + M_2 u_1)$$ (3.333) real add $$\sim 2(M_1 A_2 + M_2 A_1)$$ (3.334) for three factors $(M_1 M_2 M_3)$: real mult = $$2(M_2M_3u_1 + M_1M_3u_2 + M_1M_2u_3)$$ (3.335) real add = $$2(M_2M_3A_1 + M_1M_3A_2 + M_1M_2A_3)$$ (3.336) and for four factors $(M_1M_2M_3M_4)$: real mult = $$2(M_2M_3M_4u_1 + M_1M_3M_4u_2 + M_1M_2M_4u_3 + M_1M_2M_3u_4)$$ (3.337) real add = $$2(M_2M_3M_4A_1 + M_1M_3M_4A_2 + M_1M_2M_4A_3 + M_1M_2M_3A_4)$$ (3.338) where u_i is the number of multiplications required for M_i and A_i is the number of additions required for M_i . Notice that complex data transforms have been assumed in Eqs (3.333) through (3.338) and the number of multiplications and additions were multiplied by two. As shown in the PFA theory chapter the small-N algorithms can be implemented by using "shifts" instead of multiplications by 1/2. The FORTRAN programs available do not make use of these shifts. Therefore, the operations count for the PFA small-N DFTs shown in Table 3.7 is modified to produce Table 3.10. Using the results of TABLE 3.10 PFA SMALL-N DFT OPERATIONS COUNT FOR NO SHIFTS | N | MULT | ADD | |----|------|-----| | 2 | 0 | 2 | | 3 | 2 | 6 | | 4 | 0 | 8 | | 5 | 6 | 17 | | 7 | 8 | 36 | | 8 | 2 | 26 | | 9 | 10 | 42 | | 16 | 10 | 74 | Eqs (3.333) through (3.338), the N adds required for the output mapping, and Table 3.10 the number of real multiplications and additions are listed for all permissible N values in Table 3.11a and b. The corresponding graphs in Figures 3.35 and 3.36 show the
multiplications and additions as a function of N. Even though this FORTRAN program did not use a shift to perform multiplication by 1/2, incorporating shifts into the small-N DFTs represents a significant savings of real multiplications. The major benefit would be in small computers where software multiplies are more costly relative to additions. The benefit of performing multiplications by using shifts is given in Table 3.1a and b under the PCT (percentage) column. PCT was calculated by: $$PCT = ((M-MS)*100)/M$$ (3.339) where M is the number of multiplications without using shifts and MS is the number using shifts. The percentage savings as a function of N was plotted in Figure 3.37 for all values of N. 3.5.8 Memory Requirements for PFA. The PFA program listed in Appendix I requires 770 words of program memory when compiled for the CDC Cyber 74 computer. The memory array requirements are given by: X, Y, A, B: length N The memory array required by PFA is given by: $_{\text{LY}}$ array = 4N TABLE 3.11a $\label{eq:pfa} \mbox{ PFA REAL OPERATIONS AND MEMORY COUNT FOR $N\!\leq\!72$ }$ | И | FEFL
FULT | REAL
ADES | MULT
MVSHIFT | P01 | Ξოὐ√ Λ | |------------|--------------|--------------|--------------------|-------------|----------------------------------| | | | | | | | | 2 | ; | Ų | i. | ÷ | , q | | 7 | : | 44 R | 2 | <i>*</i> . | 13 | | i, | | | t | | 1.5 | | •; | : 2 | 3.0 | ć | 7.7 | 3.0 | | | * | 1.5 | 1
% | : . | 27 | | 7 | 1 f | 7.9 | 1 8 | | 2.3 | | 3 | | 1 . | 1 | | 38 | | 3 | ۶٠ | c g | ! ! | 2 | 7 | | 1 | 2: | Ĉ. | 1 : | 3.3 | e)
} \ | | 12 | 11 | 1 0 | <u>.</u> | 3.3 | , . | | <u>.</u> 4 | 36 | 10 s | 32 | ; | - 5 | | 1. | <i>:</i> ! | 177 | 3 : | ?) | *. | | 16 | ? | 11 | 2.* | • | *: | | 13 | <i>₹</i> ;, | 200 | 33 | | 72 | | S. | · > | 230 | 3.2 | 33 | 9 | | 21 | 10 | 38.1 | : ? | 1.0 | 50 | | 2 : | • | 211 | 3.5 | | 40 | | ? a | 4.1 | 46 5 | 1.4 | | 112 | | 7 . | 1.2 | 4 J | :: | 7 - | | | 3 5 | 11. | 683 | 17: | 1 7 | 3 2 1
2 2 3
3 4 4
3 1 1 | | 74 | O. | 511 | | | • | | ** · | 111 | 972 | | 2
27 | 4.3 | | | 12 | 721 | 121 | 1: | 1 1 | | | 2 | 77.4 | 1 2 | ; ; | 1 3 | | 3 | 121 | U.S. | 3.5 | | | | | 1 21 | gęr. | 1 / 2 | | 102
206 | | 55
3 | 2. | 5. (| 135 | 3.5 | 5 | | ·, 7 | 200 | 12° : | 7 · . | \$ #
5 # | ? | | · . | € 21
€ 21 | | 2) f
2°1
114 | | | | . , | | 40.0 | ≟ ≟ | 11 | | | . 3 | <u> </u> | 12)2 | 1.4 | 1.5 | • | TABLE 3.11b $\label{eq:pfa} \mbox{ PFA REAL OPERATIONS AND MEMORY COUNT FOR $N \geq 80$ }$ | 4 | FEAL | r.EAL | 1761 | | | |-------------------------|-------------------------|-------------------------------------|---|-----------------|---| | | 1 111 7 | ADNO | MASHILL | POT | REAU SA | | * . | 5. j | 130A | 245 | 21 | 3 2 | | ٠, | ₹ ' | 162 | 2 : | 1 5 | 375 | |) 1
3 | 1 43 | 1780 | 3 . | 2.5 | 7.8 | | <u></u> | , E.C. | 2315 | , <u>ë</u> | 2 % | 375
75 | | 442 | हुतुः
१) | 2300 | 2 t
3 k
 | 2 #
2 #
F | 44 | | 4.9 | t j | 211 | 7.7 | 7, | <u>.</u> 1 | | 4.9 | 1 | 28°
3.4°°C
28°Z | 1778
178 | : | 13
176
177
172
172
183
183
183 | | 4 | 1 <u>1</u> f | 3,62 | 2 + 6 | 17 | 5.5 | | 104 | t | 282. | 7 : | 1 2 | * ** | | 1 53 | 192 | 7 (| 7 .
95. | 1.6 | 672 | | 111 | 872
225 | 3 91 4 | a, <u>:</u>
a, <u>:</u> | 2.5 | 7 2: | | 24 | . 2: | r to | 3 5 € | 3.4 | ۶ ۳ | | 3 7 3
3 7 3
3 7 4 | 1276 | 79
5 10
2 | 5.4 | | c _i ; | | 5.5 | 1136 | 5.20 . | 1 24
1208
1709 | Ξ, | 4 ° ′ ° ′ | | → , " | 1 + 1 2 | 50 C | 1218 | 1 5 | 417. | | 715 | 227 | 8031 | 2732 | 15 | 125 | | दर् | 21 31
21 4 | 5.200 | 5 + 1 2 | 1.7 | 125
1718
11 | | 7)' | - 1 6 1 | 35 % | 1.37 : | ҈. | 47" | | <u>2</u> | ئے کے | 1.555 | 1312 | 5 · | 1531 | | ÷ . | 212 | 1 Bocc | 23 ' | ÷ | 2111 | | • 5 | 21 2
7 21
1 3 . 2 | 1.3 3 | 23 :
25 : | 13 | 20 10 | | ÷ ; | 13.8 | 100円・ | 1323 | 1.5 | 81.2
81.5
83.61
61.38 | | • • •
 | 8.2t | 20000 | 1332 | 2 1 | 2 " x | | .3 | · 7 t | 2 12 | 2 < k | 2 2 | 2361 | | 1 3 3 | (1 | 3 1 3 | ₹15 | 7 | . :? | | 3. | ₹ 7 , r | 34981 | 71.15 | :: | • | | | 13818 | 2 · · · · · | 7 + 2 | Ĺ | 67.2 | | n ; g | 1.000 | \mathbf{x}_{0} , \mathbf{x}_{0} | 1 132 | 1: | <u>.</u> | | : | 3 4 4 6 | 130812 | 2 4 k
3 1 5
7 2 4 5
4 2 3 2
7 3 4 | 16
16
17 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Figure 3.35. Real Multiplications for the PTA. Figure 3.36. Real Additions for the PFA. からの 東京 人名 日本 ないころ Percentage Savings of Multiplications by Using Shifts in PFA. Figure 3.37. Figure 3.38. Memory Array Required by PFA. and is listed in Table 3.11a and b and plotted in Figure 3.30. 3.5.9 <u>Summary</u>. Two algorithms which use high-speed convolution techniques have been presented. Both use the convolution for computing small-N DFTs and both require N to be factored into relatively prime factors. This particular factorization used the Chinese Remainder Theorem and the "Sino correspondence" to reorder the data arrays. The theory, structure, and operations count was presented in this section. # IV. Comparison Results of Efficient Discrete Fourier Transforms ## 4.1 Introduction Several fixed radix and mixed radix algorithms have been studied and the number of real operations and memory count required have been computed in the preceding sections. The results from these sections are compared and presented here. algorithms are discussed, the justification for selecting Singleton's algorithm over the IMSL and mixed radix FFT is given, tables and graphs comparing the conventional mixed radix FFT with the fast convolution algorithms (WFTA and PFA) are presented and advantages of each are discussed. This chapter concludes with an algorithm which selects the most efficient algorithm based on memory available, machine speed, zeropacking, and sequence length. A flowchart implementation of the algorithm is included. The timing tests in this section used the Cyber 74 system clock. This clock was accessed using the FORTRAN command SECOND(CP) which provides a timer accurate to .001 seconds. The transforms were all performed using samples from the function e^{-t} cos $50\pi t$ which has the magnitude transform shown in Figure 4.1 for N=625. Figure 4.1. Fourier Transform of e^{-t} cos $50\pi t$. The memory comparisons made in this chapter are based on memory array required. The program memory statistical from compilation on the Cyber 74 is not applicable to smaller machines and would not permit valid memory comparisons. The program memory required for the Cyber 74 is given to show the relative sizes of the algorithms. # 4.2 Conventional Radix-3 vs R(u) Field Radix-3 In the previous chapter the real operations count for these two radix-3 FFTs was given in Table 3.2. From this table the most efficient radix-3 algorithm can be selected based on machine speed. Validation of this table was performed using the CDC Cyber 74 computer which has a 1.1 multiply-to-add ratio and test data). With a 1.1 multiply-to-add ratio Table 3.2 indicates that the conventional radix-3 algorithm is more efficient for all sequence lengths shown. The timing results in Table 4.1 verify this conclusion. #### 4.3 Fixed Radix vs Mixed Radix FFTs In Sections 3.3 and 3.4 the real operations count and memory requirements developed for the fixed radix and mixed radix FFTs. Using the results from these sections the real operations count and memory requirements are given in Table 4.2 along with results from timing tests conducted on the CDC Cyber 74. This table demonstrates that Singleton's mixed radix FFT (MFFT) minimizes the operations count for factors of 2, 3, and 5 to the level of the fixed radix algorithms. TABLE 4.1 RADIX-3 TIMING COMPARISON | N | Conventional Radix-3 Time | R(u) Field
Radix-3 Time | |------|---------------------------|----------------------------| | 27 | .002 | .003 | | 81 | .009 | .011 | | 243 | .026 | .034 | | 729 | .094 | .117 | | 2143 | .305 | .393 | TABLE 4.2 FIXED RADIX (FR) VS MIXED RADIX (MR) FFTS | | Multipl | fultiplications | Addit | ions | | ibrary | Expone | Exponentiation | Memory. | Aritay | | 2**
VI | |------|---------|-----------------|--------------|-------|-------------|--------|--------|----------------|---------|------------------|---|-----------| | zi | R.) | M | ≈ .} | FR | FR. | MR | FR | MR | ¥. | fit | | | | 27 | 274 | 313 | 515 | 452 | ٦ | ٦ | 0 | 0 | 1.41 | 70 | • | · · | | 32 | কুকুক | 506 | 2,12 | 435 | 5 | H | 0 | 14 | 7. | ਜ਼ਿਲ | | <u>.</u> | | 64 | 0701 | 504 | 1778 | 1056 | 9 | ٦ | 0 | 36 | 1.35 | 341 | | | | 81 | 1138 | 1396 | 1.173 | 1844 | - 4 | 7 | 0 | 0 | 358 | 770 | • | | | 125 | 70.63 | 2448 | 3::27 | 3072 | 7 | -1 | 0 | ŋ | 5:3 | 77. | | 7 | | 128 | 4.16.5 | 1262 | 2142 | 2505 | 7 | 7 | 0 | 99 | 216 | 5.20 | | | | 243 | 533 | 5268 | 72:11 | 6904 | ч | m | 0 | 0 | 1003 | :#
.** | | 7. | | 256 | 5116 | 2850 | F 573 | 5683 | œ | m | 0 | 158 | 513 | | • | | | 512 | 11200 | 7988 | 14846 | 13802 | 6 | 10 | 0 | 578 | 1004 | ÷ - | • | 11-5 | | 625 | 1:754 | 16520 | 20,817 | 20552 | 1 | 4 | 0 | 0 | 4.60 | 611 | | | | 729 | 15142 | 18832 | 21.75 | 24684 | ٦ | 10 | 0 | 0 | 537 | | • | | | 1024 | 24572 | 14568 | Carried Land | 28436 | 10 | 11 | 0 | 652 | 2043 | <u> </u> | • | | | 2048 | 53244 | 43366 | 711- 18 | 68127 | 11 | 20 | 0 | 1242 | 3.55 | 7
7
7
8 | • | | | 7187 | 36,86,6 | 65376 | r | 83718 | - -1 | 32 | 0 | ٥ | 5015 | | ٠ | • | The program memory required by each algorithm is given in Table 4.3. The large size of the MEET is a result of the extra sections needed to transform any length transform and the extra FORTRAN code required to perform multi-variate transforms. None of the other FFTs are capable of performing multi-variate transforms without a significant amount
of additional user programming. Singleton's MFFT can perform up to a tri-variate transform, however, this additional flexibility is a disadvantage on memory limited computers when performing single-variate FFTs. The fixed radix and mixed radix FFTs are roughly equivalent in efficiency. The fixed radix FFTs offer a memory savings over the MFFr for all radix-2 transform sequence lengths shown in Table 4.2 and some of the radix-3 and 5 transform lengths. The main advantage the MFFT offers is the capability to transform any length sequence N while the fixed radix algorithms are limited to integer powers of 2, 3, and 5. ## 4.4 Mixed Radix FFT Comparison: IMSL vs Singleton In Chapter 3 and Appendix G the real operations and memory required for the IMSL and Singleton's mixed radix FFTs were derived as a function of N. Those two algorithms are now compared on the basis of real operations and memory and the best algorithm selected. TABLE 4.3 PROGRAM MEMORY REQUIRED BY FFTs | FFT | Program Memory | |----------------------------|----------------| | Radix-2 | 108 | | Radix-3 | 301 | | Radix-5 | 458 | | Singleton's Mixed
Radix | 1100 | The expression for real multiplications and additions developed for Singleton's FFT is subtracted from the IMSL. FFT expression for real operations to show the extra operations required by IMSL. Recall that both Singleton and IMSL versions of the FFT compute sine and cosine using the difference equation of Section 3.1. Both implement the sine and cosine computation similarly and require the same number of real operations to compute them. Assuming that N can be factored as: $$N = 2^r 3^s 4^t 5^u p_1^{ml} \dots p_k^{mk}$$ (4.1) the difference in real multiplications between IMSL and Singleton's becomes: delta multiplies = $$[2rN + 4sN + 3tN + 8 + 32(u)N/5]$$ + $\sum_{i=1}^{k} (2(p_i-1) + 4(mi)N(p_i-1)/p_i$ + $(mi)N(p_i-1)^2/p_i) - 4N-1) + KMULT$ - $[2rN + 4sN + 3tN + 32uN/5]$ + $\sum_{i=1}^{k} (2(p_i-1) + (mi)N(p_i-1)^2/p_i$ + $4(mi)N(p_i-1)/p_i) - 4(N-1) + KMULT$ = 8 (4.2) For large values of N the difference in multiplications is negligible. The difference in real additions is derived from: delta adds = [IMSL addition expression] - [Singleton addition expression] delta adds = [3rN + 6sN + 15tN/2 + 4 + 48(u)N/5] $\begin{array}{c} k \\ \Sigma \\ ((p_i-1) + 8(mi)N(p_i-1)/p_i \\ i=1 \\ + N(mi)(p_i-1)^2/p_i) - 2(N-1) + KADD] \\ - [3rN + 16sN/3 + 11tN/2 + 8uN \\ + \sum_{i=1}^{k} ((p_i-1) + 7N(mi)(p_i-1)/p_i \\ i=1 \\ + (mi)N(p_i-1)^2/p_i) - 2(N-1) + KADD] \\ = 2sN/3 + 2tN + 8uN/5 + 4 \\ + N(p_i-1)/p_i \end{array}$ (4.3) The results from Eqs (4.2) and (4.3) demonstrate that the IMSL has approximately the same number of real multiplications but requires significantly more additions than Singleton's mixed radix algorithm. Based on these results and because the data reordering for the two subroutines is the same, the Singleton FFT is the most efficient of the two subroutines. This conclusion was confirmed by timing tests on the CDC Cyber 74 computer at AFIT. The results are shown in Table 4.4 for selected sequence lengths. The memory array required for each of the algorithms was derived in the preceding chapter. Those results are now compared for N less than 200 and the percentage of array memory saved by Singleton's FFT over the IMSL FFT was plotted in Figure 4.2 using the equation: TABLE 4.4 TIMING RESULTS FOR IMSL AND SINGLETON FFTs | <u>N</u> | IMSL
Time (sec) | Singleton
Time (sec) | |----------|--------------------|-------------------------| | 60 | .010 | .008 | | 120 | .018 | .014 | | 125 | .019 | .012 | | 128 | .013 | .011 | | 210 | .039 | .036 | | 243 | .031 | .031 | | 256 | .028 | .021 | | 315 | .054 | .052 | | 420 | .081 | .072 | | 504 | .090 | .082 | | 625 | .128 | .076 | | 729 | .107 | .107 | | 840 | .163 | .150 | | 1008 | .151 | .157 | | 1024 | .126 | .092 | | 1250 | .275 | .158 | | 1260 | .268 | .231 | | 2048 | .269 | .224 | | 2187 | .366 | .364 | | 2520 | .365 | .495 | Memory Array Saved Using Singleton's Instead of IMSL's Fift. MEMSNG = Singleton's array memory From the plot it is evident that Singleton's algorithm uses less memory than the IMSL program. The "flat" portion of the curve approaches 57% which can be verified by examination of Eqs (3.172) through (3.178) for N a prime number. This number represents the memory savings at the points where N is prime. The values of M, K, KB, and JK used to compute the IWORD constant in Eq (3.173) are M=1, K=N, KB=N-2 and JK=1. IWORD = $$3 \cdot M + 3 + MAX (4 \cdot M + 7 + 6 \cdot K)$$ $$KB + 1 + 2 \cdot JK$$) (4.5) $$IWORD = 3 + 3 + MAX (6N + 11, N + 1)$$ (4.6) $$IWORD = 6 \cdot N + 17 \tag{4.7}$$ Now the memory for IMSL given that N is prime becomes: $$MEMCC = 2 \cdot N + 2(6 \cdot N + 17)$$ (4.8) $$MEMCC = 14 \cdot N + 34 \tag{4.9}$$ The array memory required by Singleton's FFT is based on the values NP and KD. NP is dimensioned to one less than the product of the square free factors of N or if at most one square free factors is present, MP can be dimensioned to M+1 where M is the number of prime factors in N. KD is the size of arrays AT, BT, CK, and SK where KD equals the largest prime factor in N. Using these results the expression for array memory where N is prime becomes: $$MEMSNG = 2 \cdot N + 4 \cdot KD + NP$$ (4.10) Substituting for NP and KD this equation is: $$MEMSNG = 2 \cdot N + 4 \cdot N + 2 \tag{4.11}$$ $$MEMSNG = 6 \cdot N + 2 \tag{4.12}$$ Substituting Eqs (4.9) and (4.12) into the percentage expression in Eq (4.4) is seen to approach approximately 57%: % savings = $$((14 \cdot N + 34) - (6 \cdot N + 2))$$ $\cdot 100/(14 \cdot N + 34)$ (4.13) % savings = $$(8 \cdot N + 36) \cdot 100/(14N + 34)$$ (4.14) As N gets large Eq (4.14) becomes: % savings $$\doteq$$ 800N/14N \doteq 57% (4.15) which corresponds to the results shown by Figure 4.1. The memory array must be added to the program memory to determine the size of the program. The program memory required by each algorithm was determined by compiling each algorithm for the CDC Cyber 74. The IMSL FFT used 1061 words and the Singleton FFT used 1100 words. The larger size of the Singleton FFT relative to the IMSL version is because of the extra FORTRAN code needed to perform multi-variate FFTs. These program memory figures are only applicable for the FORTRAN compiler used here at AFIT, however, they do provide a relative measure of the program memory size. Singleton's program requires about 3.7% more program memory. The results for real operations count and memory required show that Singleton's mixed radix FFT is superior to the IMSE absorithm. For this reason Singleton's all orith was class and a best resentional IMS subroutine available for comparison to the WFTA and PFA in the following sections. Singleton's algorithm (MFFT) is referred to as a "conventional" FFT because it uses the Cooley-Tukey decimation and reordering of the data array. The WFTA and PFA use Winograd's small-N fast convolution algorithms to perform the DFT. The operation and memory array counts are presented in Figures 4.3 and 4.4 and Tables 4.5a and b. as a function of N for comparison of the three algorithms. These tables and plots illustrate the advantages and disadvantages of each algorithm and are used along with the fixed radix results in Table 4.2 to select the most efficient algorithm for a particular sequence length and machine capability (size and speed). The tables and plots refer to the algorithms as MFFT (Singleton), WFTA (Winegrad), and PFA (Kolba-Parks). The PFA used for operation counts and memory corporations is the one described by Burrus and Eschenbacher which includes prime power factors of 2,3,4,5,7,8,9 and 16. The FORTRAN coded program for PFA was obtained from C. S. Burrus of Rice University and does not make use of "shifts" for multiplications by 1/2. Both the WFTA and MFFT FORTRAN programs were obtained from the IEEE Press "Programs for Digital Signal Processing". The memory comparison was based on memory array only and did not include pregram memory. This was done because the program memory changes based on machine word length. The program memory required for the Cyber 74 is given for each algorithm so the relative size can be compared. Real Operations Count. The mixed radix MFFT written by Singleton includes special sections for factors of 2, 3, 4, and 5 as well as a general section for odd prime factors which permits the transformation of any positive integer N length sequence. Because of the special sections the operations count is less for an N which is highly factorable by 2, 3, 4, or 5 instead of higher prime powers. Figure 4.3 and 4.4 demonstrate the efficiency of Singleton's MFFT relative to the radix-2 complex transform multiplications and additions count of 2N log, N and 3N log₂ N respectively (Winograd, 1976). The MFFT operations count shown in Figures 4.3a,b and 4.4a,b are for N factorable by 2, 3, 4, or 5 combinations thereof. The WFTA and PFA counts are shown for all 59 sequence lengths which they can transform. Recall from Section 3.4 and 3.5 that WFTA and PFA sequence I jobs are limited by the data reordering algorithm used by the WFTA and PFA. These figures also reflect the WFTA "post-initialization" operations count. As shown in Section 3.5 the post-initialization count is significantly less than the number of operations required for the initial transform of length N. The second secon Real Multiplication Comparison for PFA, WFTA, and MFFT (N=500). Figure 4.3a. Real Multiplication Comparison for PFA, WFTA, and MFFT (N 5000). Figure 4.3b. Real Addition Comparison for PFA, WFTA, and MFFT (N=500). Figure 4.4a. The state of s 1 de 1 Real Addition Comparison for PFA, WFTA, and MFFT (N:5000), Figure 4.4b. OPERATIONS AND MEMORY ARRAY COMPARISON FOR MFFT, WFTA, AND PFA TABLE 4.5a OPERATIONS AND MEMORY ARRAY COMPARISON FOR MFFT, WFTA, AND PFA TABLE 4.5b | | | PFA | ~ | 3 | ıΩ | \sim | 4+6 | à | 7 | Φ | ~ | \sim | \sim | 4 | S | .) | 12 | 26 | m | .+ | 68
| 71 | Š | 52 | 50 | Š | 3 | ナ | 72 | 9 | 315 | |----------------|------------------|---------------------|------------|----------|------------|----------|------|----------|-----|-------------|---------------|----------------------------------|-----------|---------------|---------------|------------|-------------------|-----------|--------------|---------------|-----------------|----------|---------------|----------------|--------------------|-----------------|----------------------|-------------------|------------|----------|----------------| | FFA | AKRAY | WFTA | ~ | ŧ | 1 | S | 1322 | c . | 18 | 23 | ŝ | 4 | .o | 3 | ~ | 2 | 'n | 10 | 6 | - | 7 | φ
+ | \$ | 17 | 17J
50J | (A) | 0 | 225 | いちび | +5 | 232 | | Ç | YACMEY
YACMEY | 2
ਜ
ਜ | -∙Ω | - | m | -3 | 25.5 | N | S | -3 | \mathcal{C} | | 4C | 1.5 | • | 100 | 443 | σ | S | M 3 | ١ | C. | 78 | (L) | . * | 5 | Ē | т.
В | 4, | M. | # | | TON LEFT! | | ed
t:
C | ~> | | 72 | * | 2394 | 13 | ŝ | Ċ | ₹ | 0 | ~~ | ī | ٠, | ei, | 33 | 6.3 | ر.
ب. | 10 | ن 3 ت | 356 | 533 | 8 53 | 933 | +)1 | 14.7 | 353 | 25+ | + | 431 | | OFFERNISON | Sec | 4
1
1
3 | 35 | 5 | 67.
(7) | 7 | 2332 | 5.7 | ð | 25 | #6 | $\widetilde{\boldsymbol{\zeta}}$ | 97 | 5.5 | 7 | 10 | .+ | 1 | ت
۱۱۲ | 10 | 135 | 7.55 | 716 | 23.4 | 131 | 4.3.5 | 456 | 366 | 9,55 | \$2 | 392 | |) TONIO | ष नियः | iu
ti
3° | <i>.</i> ∽ | ŝ | ∵r
⊶ | | 2692 | σ | 2, | π, | 17 | ر
دم | u) | Ŝ | J, | 6 7 | 2 .
(1) | -5
G) | (M) | . + | 17
17
10) | -1
u | ر.
مد
م | 152 | 175 | ار
ارم
آم | (M
(M | 3
3
3
3 | (C)
(A) | <u>ा</u> | 3.373 | | באיסניודני מאש | | 7:0 | m | ~ | | M | 330 | > | 50 | 10 | 17 | n | 10 | 2 | $\tilde{\Xi}$ | 6.7
(| ۰ <u>۸</u> | 17 |
 | .+ | .0 | 72
61 | ₩ | 11\
M | $_{\rm i}^{\rm c}$ | - | ξ.) | ř. | 221 | 5 | 111 | | CHOTTE | HUL 1 | WFTA | 44 | +1 | 9 | 2 | 324 | X) | ىن | 3 | σ | \sim | \sim | | * | Š | 3 | 5 | 97 | ." | ن | is
a | y. | 37 | 84 | 9 | ر د
د. | 52 | 83 | J. | 33 | | 17 75 | REAL | ի
Ա.
Ա.
Ֆ. | 01 | ۲.
در | 52 | 7 | 1:5. | 73 | 12 | α,
(1) | 10
31 | 3 | # | 23 | 1 0 | 3 | .† | 5.7 | 11 | C . | T) | 173 | 년
51
14 | 10
69
01 | | | 2 5 2 | (1)
(1)
(4) | 1.5.7 | ٠٥ | 520 | | | | Z | | 34 | JC | #d
RV | 112 | 120 | 126 | 9+ T | 134 | ગ
•+ | 2
(+i | 03
44
3 | 24. | 27.2 | 23. | 315 | 326 | ريا
ن
ن | 42% | . | تر ()
الا | 57.5 | 72. | (.)
(D) | | | | いなこと | .a
#j
ii | As a demonstration of the inprovement in the post-initialiration WFTA consider the timing raulth of Table 4.e. The data presented here was collected by timing the individual subroutines (INISHL, PERM 1, WEAVE 1, MULT, WEAVE 2, PERM 2) in the WFTA for different sequence lengths and then dividing the time required for each subroutine by the total time for all of the subroutines. Comparing the MFFT and PFA against the post-initialized WFTA is assumed to be valid because most applications of DFTs involve the repeated transform of N length sequences. A point by point comparison of MFFT, WFTA, and PFA real operations is presented in Table 4.7. The sequence lengths in these tables represent the only lengths permissible for both PFA and WFTA, whereas the mixed radix MFFT can transform any sequence length. The operations count presented in Tables 4.2, 4.7 with a computer's multiply and add speed can predict the most efficient (fastest) DFT technique for that particular computer. Using the multiply and add speeds determined for the CDC Cyber 74 (see Appendix J) as 1.9×10^{-6} seconds and 1.7×10^{-6} seconds, respectively, the algorithms execution speeds were predicted from the operations count in Tables 3.9 and 4.7. The predicted execution speeds do not account for all of the actual execution time measured as shown in Figure 4.5. The extra time which was not predicted by the real operations count comes from array indexing and data reordering needed in all of TABLE 4.6 TIMING RESULTS FROM THE WETA SUBROUTINES | N | INISHL | PERM 1 | WEAVE 1 | MULT | WEAVE 2 | PERM 2 | |------|--------|--------|---------|------|---------|--------| | 315 | 48.0% | 7.5% | 16.3% | 4.5% | 16.3% | 7.4% | | 360 | 47.0% | 5.9% | 15.7% | 5.9% | 21.6% | 3.9% | | 630 | 43.9% | 5.6% | 18.7% | 5.6% | 21.5% | 4.7% | | 720 | 44.0% | 3.5% | 20.0% | 6.1% | 22.8% | 3.6% | | 840 | 34.5% | 5.5% | 23.6% | 6.4% | 23.6% | 6.4% | | 1008 | 48.0% | 1.7% | 19.2% | 6.2% | 21.5% | 3.4% | | 1260 | 38.2% | 5.3% | 18.1% | 6.4% | 27.7% | 4.3% | Results are given as % of total time to execute WFTA. TABLE 4.7 MEAL BUD AND PREDICTED TIMING RESULTS FOR MFFT, WHYA, AND PRA | (d) (u. | ?! | . 1865. | . 111 | | | ·.c. | (.202) | œ ?! | 057 | (.002) | . 51 | (.002) | ·r
-0 | (.002) | |--------------|-------------|---------|-------------|------|-------------|-------------|---------|-------------|-------------|--------|-------------|-------------|----------|-------------| | (u) V.F. (d) | | - | 510. | 5100 | | .0.7 | •) 1/2. | • | • | | <i>y</i> . | .041 (. | . 1 : 3 | | | WF'FA2 (p) | .002 | 900. | .010 | .013 | 3) .020 | .017 | .022 | .028 | .042 | .041 | .047 | .066 | .088 | 5) .187 | | WFTA2 (m) | .004 (.002) | .012 | .018 | .020 | .032 (.003) | .025 | .034 | .039 | .064 | .061 | .067 | .091 (.002) | .117 | .255 (.005) | | WFTAl (p) | .004 | .011 | .018 | .022 | .032 | 050. | .037 | .046 | 990. | .067 | .077 | .104 | .137 | . 285 | | WFTA1 (m) | .008 | .018 | .033 (.002) | .032 | .066 (.002) | .046 (.002) | .057 | .074 (.002) | .110 | .106 | .105 (.003) | .178 (.002) | .193 | .413 (.006) | | MFFT) | 00. | .014 | .018 | .023 | .031 | .032 | .041 | .050. | 390. | .064 | .086 | .100 | .147 | .315 | | MFFT (m) | .008 | 610. | .034 | .037 | .052 | .047 | .072 | .082 | .109 (.002) | .083 | .151 | .157 | .231 | .491 | | zi | 09 | 126 | 210 | 252 | 315 | 360 | 420 | 504 | 630 | 720 | 840 | 1008 | 1260 | 2520 | Notation - all times given in seconds - (m) is mean and (p) is predicted times for execution - quantities are standard deviations in excess of .001 seconds - WFTAl uses the initialization subroutine and WFTA2 was not reinitialized 170 Proceeds of Execution as a Percentage of Measure the Titte, WFTA, and PFA. Figure 4.5. the almorithms, however, the predicted execution are sufficient to select the most efficient algorithm as demonstrated by Table 4.7. The timing results in Table 4.7 compare one-to-one with the predicted times (given the standard deviations shown in parentheses) for all three algorithms. Several observations can be made from Table 4.7. First, the WFTA1 which represents the initial transform made by WFTA may be slower than MFFT for certain sequence lengths. An example of this is N=315, 630, and 720, all of which were correctly predicted to be slower from the operations counts in Tables 3.9 and 4.6. Second, the post-initialized WFTA2 and the PFA were predicted to be, and are, faster than MFFT for all sequence lengths. Third, the PFA and WFTA2 (post-initialization) are close in efficiency for all sequence lengths. 4.5.2 Memory. The memory array for MFFT, WFTA, and PFA was compiled from the previous chapter and presented in Figure 4.6 and Table 4.5a and b. The figure clearly demonstrates how much less memory array is required by MFFT. These results are due to the efficient data reordering technique of MFFT which can essentially be done in place with very little additional memory relative to the sequence length. The WFTA and PFA base their data reordering on the Chinese Remainder Theorem and require an additional two length N arrays for PFA. The WFTA uses even more memory array because of the algorithm's structure which "nest" multiplications inside all the additions. This requires Figure 4.6. Memory Arrays Required by MFFT, WFTA, and PPA. three additional arrays of length M = m_1 m_2 m_3 m_4 m_1 are the rultiplications required for the ℓ_1 . The state store the multiplication coefficients and provide working array storage because the WFTA is not computed in-place. The program memory was not included in the taiulations for comparison because program memory required depends on the machine word size. The program memory required on the Cyber 74 for each algorithm is: PFA program memory = 770 words WFT program memory = 2348 words FFT program memory = 1100 words These results were achieved from the standard compiler command FTN for the FORTRAN IV language. For short sequences these program memory requirements contribute significantly to the choice of the most memory efficient algorithm. 4.5.3 WFTA vs PFA Operations Count. The tradeoffs between WFTA and PFA for real multiplications and additions can be seen in Figures 4.3 and 4.4. In most cases the WFTA requires less multiplications but more additions than PFA. The selection of the most efficient algorithm then becomes dependent on machine speed of real addition compared to real multiplication. As an example of this tradeoff between additions and multiplications consider the case of N=630. For this sequence length the PFA requires 4352 multiplications and 18534 additions while the WFTA requires 2376 multiplications and 22072 additions. Assuming the machine add speed of 1.7 x 10⁻⁶ seconds and a multiply speed of 1.9 \times 10⁻⁶ mercal and alread execution speed for the law 10.0° seconds. The speed is .041 accords. For the selected add and multiply speed PFA was faster. However, consider the case where a multiply requires three times the addition speed of 5.2 \times 10⁻⁶ seconds. For the same N=630 the PFA speed is predicted to be .054 seconds and the WFTA speed is .050 seconds. With the increase in multiply time from 1.9 to 5.1 microseconds the WFTA became the more efficient algorithm. This example illustrated why the add and multiply speed must be known to select
the fastest algorithm for a particular sequence length N. The effects of changing the multiply to add ratio from 1 to 20 is shown in Figure 4.7a, b, and c for MFFT, WFTA, and PFA. For the sequences N=315 and 1008 the PFA is most efficient at the low multiply to add ratios but as the multiplies are "more costly" the WFTA soon becomes the most efficient. For N=30 the WFTA is the most efficient for all ratios. # 4.6 Floxibility of the MTT Algorithms It is clear from the plots in Figures 4.3, 4.4, and data in Table 4.2 that the fixed radix FFT, PFA, and WFTA are somewhat limited in permissible sequence lengths, whereas the mixed radix FFT provides a much more "dense" selection even for sequence lengths factorable by only 2, , 4, or 5. The restriction in possible values for N Figure 4.7a. Relative Efficiencies of WFFT, WFTA, and PFA. gure 4.7b. Relative Efficiencies of MFFT, WFTA, and PFA. Relative Efficiencies of MFFT, WFTA, and PFA. Figure 4.7c. In DPA and WPTA in because of the data reordering requirement that the fractions of probabilities prove the set 2,3,4,5,7,8,9 and 16. This limits N to four factors and a maximum value of 5040. The fixed radix algorithms are even more restricted than FFA or WFTA because they can transform only sequence length which are an integer power of 2, 3, or 5. # 4.7 An Algorithm to Select the Most Efficient DFT Technique. The results of this chapter are used to develop a systematic approach to selecting the most efficient DFT method from the fixed radix FFTs, mixed radix FFT (MFFT), WFTA, and PFA. A flowchart is presented which selects the most efficient algorithm based on real operations, computer memory, machine speed, and sequence length. The algorithm requires inputs of machine speed for add and multiply, sequence length, zeropack limits, and computer memory. This algorithm also assumes that the same length sequence will be repeatedly transformed such that the WFTA is initialized only once. - 4.7.1 Arguments. The algorithm requires inputs: - MRM: Computer memory available for use - N: Sequence length to be transformed - NP: The upper limit to which the sequence length can be filled to reach an efficient transform length. - A: Machine addition speed - M: Machine multiplication speed AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOT-ETC F/6 12/1 EFFICIENT COMPUTER IMPLEMENTATIONS OF FAST FOURIER TRANSFORMS. (U) DEC 80 J D BLANKEN AFIT/GE/ZE/80D-9 NL AD-A100 782 UNCLASSIFIED 3 0 4 - 4.7.2 <u>Usage</u>. The algorithm is presented as a flow-chart. The basic logic of the algorithm is: - (1) Zeropack (if permitted) to the nearest WFTA or PFA sequence length. - (2) Determine the memory requirements for the WFTA and PFA. - (3) If WFTA and PFA both fit in computer memory available, select between the two by using real operations and computer speed. - (4) If only PFA or WFTA fit in computer memory, select the one that fits. - (5) If neither PFA nor WFTA will fit in computer memory, zeropack to nearest N an integer power of 2, 3, or 5. Choose the most efficient algorithm from the fixed radix FFT and MFFT based on real operations counts and machine speed. - (6) If fixed radix FFT cannot be used, zeropack to nearest N factorable by 2, 3, or 5 and use the mixed radix FFT. Using the flow diagram of Figure 4.8a, b, and c along with the specified tables selects the most efficient algorithm. An example for N=410 demonstrates the use of Figure 4.8 and the tables in this paper to select the most efficient DFT. Given that A=450 nanoseconds (ns), M=1000 ns, 10% zeropacking permitted, and no memory limitations, the most efficient algorithm can be selected. - (1) MEM is very large and is not a limitation - (2) N=410 - (3) NP=410 + .10(410) = 451 Figure 4.8a. Flowchart to Select Most Efficient Algorithm. Figure 4.8b. Flowchart to Select Most Efficient Algorithm. Figure 4.8c. Flowchart to Select Most Efficient Algorithm. - (4) NP=N? No, continue - (5) NP<5040? Yes, continue - (6) Zeropack to nearest WFTA PFA length given in Table 4.6 which is NP=420. - (7) PFA fit in computer? Yes, continue - (8) WFTA fit in computer? Yes, continue - (9) Determine fastest algorithm between WFTA and PFA from Table 4.6. For N=420, | | WFTA | PFA | |------|-------|-------| | Mult | 1296 | 2528 | | Add | 11352 | 10956 | Using A=450 ns and M=1000 ns the predicted speeds are: WFTA = 6.4 milliseconds PFA = 7.5 milliseconds For this sequence N=420 and for the add and multiply speeds given the WFTA is the fastest algorithm. However, if this sequence were only being transformed once for a particular utilization and the WFTA could not be repeatedly used without initialization the WFTA counts must be taken from Table 3.11 where 4920 multiplications and 16200 additions are used to initialize the WFTA and perform the transform. Now the WFTA is predicted to use 56.5 milliseconds to transform N=420. When selecting between WFTA and PFA the particular utilization must be considered. It should also be noted that the predicted times from Table 4.6 are based only on real operations which do not account for all of the execution time required as shown by the timing tests. For the cases tested in Table 4.7 on the CDC Cyber 74 the real operations accounted for average 67% of the PFA, 65% of the WFTA, and 61% of the MFFT actual execution speed. ### V. Conclusions This paper, for the first time, presented a capability to select the most efficient DFT based on real operations. These real operations were tabulated and plotted as a function of N. The algorithms studied and compared for real operations and memory include: - 1. Radix-2 FFT from Rabiner and Gold. - 2. Radix-3 FFT written by the author. - Radix-3 FFT in R(u) from Dubois and Venetsanopolous. - 4. Radix-5 FFT written by the author. - 5. Mixed radix FFT for factors of 2, 3, or 5 written by the author. - 6. IMSL mixed radix FFT which can transform any sequence length N. - 7. Singleton's mixed radix FFT which can transform any sequence length N. - 8. Winograd Fourier transform algorithm (WFTA) written by McClellan and Nawab. - Prime Factor Algorithm (PFA) written by Burrus and Eschenbacher. ## 5.1 Results and Conclusions The two radix-3 FFTs were compared for real operations and memory required to perform the DFT of N length sequences where $N=3^{m}$. Selection criteria were developed and tabulated based on machine speed. The new radix-3 FFT in the R(u) field uses less multiplications but more real additions than the conventional Radix-3 FFT. The more efficient of the two algorithms depends on the relative costs of multiplications and additions. The Radix-3 in R(u) is most efficient when multiplications are costly. All of the fixed radix algorithms were compared to the Singleton mixed radix FFT for real operations and memory. The operations counts show that the most efficient algorithm depends on multiplication and addition speed of the computer. Data was tabulated for selecting the best algorithm based on this criteria. The FFT algorithm using the least memory can also be selected from Tables 4.2 and 4.3. The limited choice of sequence lengths possible with the fixed radix FFTs reduce their utility compared to Singleton's mixed radix FFT. Three conventional mixed radix FFT algorithms were compared for efficiency, memory array, and flexibility. The author's mixed radix FFT was very efficient but required more memory array and was not as flexible since N was limited to factors of 2, 3, 4, and 5. It was shown that Singleton's mixed radix FFT was more efficient, flexible, and used less memory array than the IMSL mixed radix FFT and was chosen as the best conventional mixed radix FFT. Singleton's mixed radix FFT (labeled MFFT) and the fixed radix FFTs were compared to the WFTA and PFA. The real operations and memory required was tabulated and plotted for all of the N length sequences permitted by WFTA and PFA. This comparison showed that the WFTA and PFA required less real operations but that the FFTs requires less memory. The MFFT was much more flexible than WFTA or PFA since N can be any length sequence. The WFTA and PFA were then more closely studied and the tradeoffs between the two were discussed. The PFA uses less additions but more multiplications for most N length sequences which means WFTA is more efficient when multiplications are "costly" relative to additions. The PFA uses less memory than the WFTA which makes PFA preferable when the machine is memory limited. Further criteria considered in selecting between these two algorithms are the (1) machine language and (2) the particular application of the algorithms. If the machine language permits "shifts" to be used for multiplication by 1/2 the PFA performance can be improved. (The percentage improvements have been tabulated for all permissible PFA sequence lengths). The second consideration affects the WFTA since any repeated use of WFTA for the same length N sequence does not require the algorithm to re-initialize the multiplier coefficients. Improvements in operating speeds of 40% over the initial WFTA were realized on the Cyber 74 for various sequence lengths. An algorithm to select the most efficient DFT method from WFTA (Winograd), MFFT (Singleton), fixed radix FFTs, and PFA (Kolba and Parks) was presented. This selection is based on: minimizing real operations and minimizing memory size for the machine used. Minimizing real operations is the best "first order" criteria (Singleton, 1969) and was verified by timing the transforms on the CDC Cyber 74. A summary of the above conclusions is presented in Table 5.1. The PFA was chosen as the best DFT technique because it minimizes real operations well below the FFT levels, requires substantially less memory than WFTA, and is more flexible than the fixed radix FFTs. Of course, the "optimum" algorithm depends on the specific application and computer, but for general applications the PFA provides the best mix of minimizing real operations and memory. ### 5.2 Recommendations The above
conclusions related to an algorithm's efficiency were based on real operations and then verified by timing tests on the CDC Cyber 74. The Cyber 74 is a representative large main frame computer with very high speed additions and multiplications. To further substantiate the conclusions of this paper it is recommended that similar timing tests be made on other computers (large and small) available at AFIT and the results compared to the predicted efficiencies based on real additions and multiplications. All of the data necessary to perform these tests is available in this paper. TABLE 5.1 COMPARISON OF DFT ALGORITHMS | MFFT | Real
Operations
Fair | Memory Array Excellent Good | Program Memory Fair Excellent | Flexibility
Excellent
Poor | | |------|----------------------------|------------------------------|-------------------------------|----------------------------------|--| | WFTA | Excellent | Poor | Fair | Fair | | | PFA | Excellent | Good | Excellent | Fair | | Ratings: Excellent, Good, Fair, Poor #### Bibliography - 1. Bergland, G.D. "A Fast Fourier Transform Using Base-8 Interactions," Math. Comp., Vol. 22, pp. 275-279, April 1968. - 2. Brenner, N.M. "Three FORTRAN Programs that Perform the Cooley-Tukey Fourier Transform," M.I.T. Lincoln Lab, Lexington, MASS, Tech Note 1967-2, July 1967. - 3. Brigham, Oran E. The Fast Fourier Transform. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1974. - 4. Burrus, C.S. and P.W. Eschenbacher. "An In-Place, In-Order Prime Factor FFT Algorithm," Unpublished Article. School of Electrical Engineering, Rice University, Houston, TX 77001, 1980. - 5. Burrus, C.S. and T.W. Parks. "Efficient Techniques for Signal Processing", Final Report, Contract DASG50-78-C-0082, Ballistic Missile Defense Advanced Defence Center, 30 June 1979 (AD B039920L). - 6. Cooley, J.W. and J.W. Tukey. "An Algorithm for the Machine Calculation of Complex Fourier Series", Mathematics of Computation, Vol. 19, No. 90, pp. 297-301, 1965. - 7. Dubois, E. and A.N. Venetsanopoulos. "A New Algorithm for the Radix-3 FFT", IEEE Trans. on Acoustics, Speech, and Sig. Processing, Vol. ASSP-26, No. 3, pp. 222-225, June 1978. - 8. Gentleman, W.M. and G. Sande. "Fast Fourier Transforms for Fun and Profit," 1966 Fall Joint Computer Conf., AFIPS Proc., Vol. 29, Washington, D.C., Spartan, pp. 563-578, 1966. - 9. Kolba, D.P. A Prime Factor Algorithm Using High Speed Convolution. MS Thesis. Houston, Texas: Rice University School of Engineering, May 1977. - 10. Kolba, D.P. and T.W. Parks. "A Prime Factor Algorithm Using High Speed Convolution," IEEE Trans. on Acoustics, Speech, and Sig. Processing, Vol. ASSP-25, No. 4, August 1977. - 11. McClellan, J.H. and H. Nawab. "Complex General-N Winograd Fourier Transform Algorithm (WFTA)", Programs for Digital Signal Processing Committee IEEE Acoustics, Speech, and Sig. Processing Society, IEEE Press. New York: John Wiley and Sons, Inc., 1979. - 12. McClellan, J.H. and C.M. Rader. Number Theory in Digital Signal Processing. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1979. - 13. Morris, L.R. "A Comparative Study of Time Efficient FFT and WFTA Programs for General Purpose Computers," IEEE Trans. on Acoustics, Speech, and Sig. Processing, Vol. ASSP-26, No. 2, April 1978. - Oppenheim, A.V. and R.W. Schafer. <u>Digital Signal Processing</u>. Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1975. - 15. Pollard, J.M. "The Fast Fourier in the Finite Field", Math Comp., Vol. 25, April 1971. - 16. Rabiner, L.R. and B. Gold. Theory and Application of Digital Signal Processing. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1975. - 17. Rader, C.M. "Discrete Fourier Transforms When the Number of Data Samples is Prime", Proc. IEEE, Vol. 56, pp. 1107-8, June 1978. - 18. Reed, I.S. and T.K. Truong. "The Use of Finite Fields to Compute Convolutions", <u>IEEE Trans.</u> on <u>Inf. Theory</u>, Vol. IT-21, No. 2, March 1975. - 19. Silverman, H.F. "An Introduction to Programming the Winograd Fourier Transform Algorithm", IEEE Trans. on Acoustics, Speech, and Sig. Processing, Vol. ASSP-25, No. 2, April 1977. - 20. Singleton, R.C. "On Computing the Fast Fourier Transform", Communications of the ACM, Vol. 10, No. 10, p. 651, October 1967. - 21. Singleton, R.C. "An Algorithm for Computing the Mixed Radix Fast Fourier Transform", IEEE Trans. on Audio and Electroacoustics, Vol. AU-17, pp. 39-103, June 1969. - 22. Thomas, L.H. "Using a Computer to Solve Problems in Physics", Applications of Digital Computers, Boston, MASS: Ginn, 1963. - Winograd, S. "Some Bilinear Forms Whose Multiplicative Complexity Depends on the Field of Constants", IBM T.J. Watson Res. Ctr., Yorktown Heights, NY, IBM Res. Rep., Rc 5669, 10 October 1975. - 24. Winograd, S. "On Computing the Discrete Fourier Transform", Proc. Nat. Acad. Sci. USA, Vol. 73, No. 4, pp. 1005-6, April 1976. - 25. Zohar, S. "Fast Fourier Transformation: The Algorithm of S. Winograd", NASA, Jet Propulsion Lab, California Institute of Technology, Pasadena, CA, 15 February 79 (AS N79-19733). ## Appendix Λ. Radix-2 FFT Algorithm This appendix presents an algorithm for computing the complex fast Fourier transform (FFT) defined by: $$X(k) = \sum_{n=0}^{N-1} x(n) \exp(-j2\pi nk/N)$$ where k = 0, 1, ..., N-1 and n=2^M, M integer. A FORTRAN subroutine is listed for computing the radix-2 FFT of a single-variate forward complex Fourier transform or calculates one variate of a multi-variate transform. ### Arguments. A = The complex array to be transformed which is dimensioned to length N. N = The integer sequence length to be transformed which must have length equal 2^{M} . M = The integer power of 2. Usage. For a single variate forward transform: - (1) Specify the input complex sequence A along with parameters M and N. - (2) Dimension complex array A to length N. - (3) Call FFT2C (A,M,N). - (4) A contains the complex output vector X(k). ``` THIS FET WAS TENER FROM FARINGE STORY. THIS FET WAS TENER FROM FARINGES STORY. TO JUST AND ARPLICATION OF DIGITED SIGNED 1 - = , 관심 하는데 ราชาธาร์โดยที่จาก เรียก าชพพาธาร์ คะประกาณจาก 946± : 5 D= 14年三十十四 260= 554=574 270= 14011=14-1 280= J=1 DO 7 J=1.8M1 290= 300= IF (1.65.U) 60 TO 5 310= T = \Theta \in \mathcal{F}_{\mathcal{T}} 320= \Theta \in D = \Theta \in D 330= · \Theta \in \Gamma \cap \Theta 340= M=NM은 35.0± TECK.68.00 60 TO 7 34 C± 1= !-+ ?? 0= F = 1 (₹) 多色的士 an in a ?90± 1= 144 406= #I=1.1415929595899 410= ከሚ ውስ <u>L</u>=1.5 450= 177= 146 = 4 200 多無値を入れる 乗げ 500= ANTENHANTINH 510± 10 Acti=Acti+T 910= 10 -1.1\pm1.1\bullet\tau_0) *, * · · - PE TURN - 1111 41 = \bullet = 0 \quad : \quad \bullet \quad : \quad : ``` # Appendix B. Radix-3 FFT Algorithm This section presents an algorithm for computing the fast Fourier transform (FFT) based on a method called decimation-in-time described in Chapter III. This algorithm is an efficient method for computing the transformation: $$X(k) = \sum_{n=0}^{N-1} x(n) \exp(-j2\pi nk/N), k = 0,1,2,..., (N-1)$$ where X(k) and x(n) are complex valued. This algorithm requires that the sequence length be $N=3^m$, m=0,1,2,.... This appendix lists a FORTRAN subroutine for computing the radix-3 FFT. This subroutine computes the single-variate complex Fourier transform or calculates one variate of a multivariate transform. #### Arguments. A = The real part of the array to be transformed which is dimensioned to length N. B = The imaginary part of the array to be transformed which is dimensioned to length N. M = The exponent of 3. N =The length of the data sequence $(N=3^{M})$. IW = A work vector of length M. WKS and WKC = Storage arrays of length N used for sine and cosine lookup tables. - Usage. For a single variate forward transform: - (1) Specify the input sequences A and B along with the parameters M and N. - (2) Dimension A,B,IW,WKS and WKC to the correct lengths. - (3) Call FFT3TM (A,B,M,N,IW,WKC,WKS). - (4) A and B are the output real and imaginary portion of the complex vector X(k). ``` 150=0 I god to Complete Profit in the CONTRACTOR THE RESIDENCE OF THE CONTRACTOR OF THE CONTRACTOR 21:4 वर में प्रशासिक है। 医单位压力 PEAL VECTOR OF LEMATH M=9★★M. CHATHELL A CONTAINS 230=0 PEAL MALUE TO 18 TEASTERNAS. 240=0 OH DUTPUT A IS REPLACED BY THE FOURIER TRANSFORM. 250=0 ява∟ мастор оя цената к⇔р••а. Он траот в сонтата 3-33-5 IMAG MALUE TO BE TRAMPEDAMED. 270=0 THE OH OUTPUT B IS REPLACED BY THE ROURIER TRANSFORM. 280=0 ୍ଳ: IRPUT EKPORENT TO WHICH ଓ IS PAISED⋅I.E.⋅H≔3••M. 290=0 300=0 IW: WORK VECTOR OF LEMATH M. 310=0 MKC: APPAY FOR CTORAGE OF THE COSINE TERMS USED TO TWIDDLE FEIU LTS 320=C WKS: ARPAY USED TO STORE THE SIME TERMS TO TWIDDLE THE RESULTS M: LENGTH OF THE APPAY TO BE TRANSFORMED. 330≃0 340=0 PEMARKS: 350=0 FFT IS COMPUTED USING BUTTERFLY FLOWGRAPH SHOWN BY 360=0 370=0 "DIGITAL SIGNAL PROCESSING" BY OPPENHEIM&SCHAFER P.314. 380=0 AUTHOR: JOHN D. BLANKEN, CAPT, USAF 390=0 4 AUG 80 400=0 420=0 430=8 START OR SUBROUTINE FRISTM: 440=C ◆◆◆ DIMENSION ALL APPAYS: ◆◆◆ 450=0 REAL ACTOR RELATIONS CAN MINE CLAS 450= DIMENSION IN MORROUNT(15) REPASS(15) 470= 430=0 ◆◆◆ DEGLARE 10753080 (£58401) (676680) (606080) 490=0 500=0 INTEGER D. TYPE. P. RUB. FYA 510= 52 u= FI=3.1415+665556+6 530= i4=3◆◆i4 540=0 550=0 MINE-SECOND (CP) 550= 570=0 COMPUTE THE SINE % COSINE LOOKUP TABLES USING THE RECUPSIVE 580±0 PELATION HIP ទីមិននៅ ė(i))= THETA:2.0•8I H SINSO=SINOTHETA/2.00 610= @#-2.0+(CINSO++2.0) 620= S=SIH (THETA) 630= 過200 (1) ≠1. 640= ``` omproved the management of the profit of the contract c 100. · ! . . . ``` 1810= 18/108/94.48.49/38 TB 83 in the ---- 1:40= Maurie econon ro-Mai 1250= PRINT → + "IHUPRIE TIME=" • MOUTI 1880=0 1870=0 *** ARRAYS ARE HOW SHUFFLED.*** 1280=0 1290=0 1300=0 ★★★ COMPUTE THE TRAMSFORM: ★★◆ 1310=0 1320=0 1330=0 COMPUTE BE CONSTANTS 1340= CONST=.8660254037844 1350=0 1360=C THIS LOOP COUNTS THE STAGE NO. THE NO. OF STAGES =M 1370=0 1380= XINN=SECOND(CP) 1390= DO 30 L=1.M 1400=0 1410=0 THE INTEGER D IS THE DISTANCE BETWEEN BUTTERFLIES(BF) 1420=0 WHICH HAVE
THE SAME COMPLEX TWIDDLE FACTORS : (TF) 1430=0 1440= D=3++L 1450=0 1460=C TYPES OF BF IN STAGE WHICH USE DIFFERENT TF: 1430= Li11=L-1 1490= TYPE=3++Li11 1500=0 INITIALIZE THE TWIDDLE FACTORS: 1510=0 1520=0 1530= TFal=1. 1540= TFB1=0. 1550= TFA2=1. 1560= TFB2=0. TFA3=1. 1570= 1280= TFB3=0. 1590=0 COMPUTE DISTANCE BETWEEN BE ENDPOINTS FOR THIS STAGE: 1600#0 1610=0 P=TYPE 1620= RX2=R+2 1630= 1640= RX4=R+4 1650=0 1660=0 1670=0 COMPUTE INDEX CONSTANTS FOR COS & SIN LOOKUP TABLES 1680=0 1690= KI = H \times D 1700= K5=5+K1 1710=0 THIS LOOP INDEXES THE BF WITH SAME TES, INDEXES THE TES, 1720=0 1730= DO 40 J=1.TYPE FIRST STAGE HAS NO TELS SO SKIP TE COMPUTATION 1740=0 1750= IF (L.EQ. 1) 60 TO 60 1760= IF (J.EQ. 1) 60 TO 60 ``` ``` 1 Fr 11= +1+1 ∃=11+6- 15 96=0 TWINNER THE BE IMPUTE AND CITED ASSULTED IN THE LIV 14:0 =. 1910-0 1950= 91T=8(I1) 1930= B1T=B(I1) IF L = 1. NO TRIS ARE RECUIRED: 1940=0 1950= IF(L.E0.1) 50 TD 81 IF (U.E0.1) 55 TD 61 1950= 1970= A2T=(A(I2) ◆TFA2) -(B(I2) ◆TFB2) B2T = (A(12) * TFB2) + (B(12) * TFA2) 1980= A3T=(A([3) ◆TFA3) -(B([3) ◆TFF3) 1990= 2000= B3T=(A(I3) +TFB3) +(B(I3) +TFA3) 2010= 60 TO 62 82T=8 (12) 2020= 61 2030= B2T=B(I2) 2040= 83T=8 (I3) 2050 = B3T=B(13) 2080=0 2070=0 COMPUTE THE BF: 2080=0 2090= 68 ASAS=AST+AST 2100= B2B3=B2T+B3T 2110= 8(I1)≈81T+8283 2120= B(I1)=B1T+B2B3 PBM2=CONST + (A2T-A3T) 2130= PANG=CONST + (BOT-B2T) 2140= 2150= PAW1=A1T-0.5•A2A3 2160≈ 9BM1=B1T-0.5◆B2B3 2170= A (18) #88 (1-860) ه د د ا File (#FFN:1-FFN:2 1000 = 4 (3 · = F/A) (* F/A) (<u>8</u> 260= · · 기준 · = 단위 11 + 단위하군 2210€ 50 CONTINUE 2220= 40 CONTINUE 2230= 30 CONTINUE MOVER-SECOND (CP) -XINN 2240≈ 3250= PRINT+ "BF TIME =" + MOVER 2280=0 2270=0 ••• END OF TRANSFORM COMPUTATION. ••• උදිසි⊅≃ RETURN 2290=0 2300=0 END OF FFTSTM SUBROUTINE 2310=0 2320=0+++++++++++++++++++++++++ 2330=0+++++++ 2340= END ``` ## Appendix C. Radix-3 FFT in R(u) This appendix presents an algorithm for computing the radix-3 FFT based on a method which transforms the array from the complex domain (1,i) to the R(u) domain (1,u). ### Arguments A = Real portion of the complex data sequence to be transformed. It is dimensioned to length N. B = Imaginary portion of the complex data sequence to be transformed. It is dimensioned to length N. M = The exponent of 3. N =The length of the data sequence $(N=3^{M})$. IW = Work vector dimensioned to length M. WKC and WKS = Storate array dimensioned to length N and used for sine and cosine look up tables. RTEST = Set equal to zero or one. If the data sequence is real, RTEST=1; if the data sequence is complex, RTEST=0. <u>Usage</u>. This algorithm is an efficient method for computing the transformation: $$X(k) = \sum_{n=0}^{N-1} x(n) \exp(-j2\pi nk/N) \quad k = 0,1, ...$$ where X(k) and x(n) are complex valued. This algorithm restricts N to equal 3^M where $M=0,1,2,\ldots$ For a single variate forward transform: - (1) Specify the input sequences A and B along with parameters M, N, and RTEST. - (2) Dimension A,B,WKC,WKS, and IW. - (3) Call FFT3RU (A,B,M,N,IW,WKC,WKS,RTEST). - (4) A and B are the output real and imaginary portion of the complex vector X(k). ``` rana 🔭 🛊 🛵 d 🔻 f Mar ran kator (1822-1965) Alto Elitabit (1808-1865) Elit (1965) ल राह्नाच्छा लडा तुर प्रकारणातु उद्देशका कारणा देश हो। 3 3 m =1 230=0 689008815: 340=0 -REAL VECTOR OF LEBSTH N=:••M. - OH INPMT A CONTAINS TRAPTRIMART BE TO BULAN JABR [f] = [CH CUTERT A IT FERLAGED BY THE FOURTH PRANCEDEM. |\varphi' \in \Omega = 0 REAL VECTOR OF LEMSTH N=3••M. ON IMPUT B CONTAINS 270=0 IMAS VALUE TO BE TRANSFORMED. 280=0 ON OUTPUT B IS REPLACED BY THE FOURIER TRANSFORM. 296=0 M: INPUT EXPONENT TO MHICH 3 IS RAISED, I.E., N=3. • M. 300=0 310=0 IN: WORK VECTOR OF LENGTH M. N: LENGTH OF THE ARRAY TO BE TRANSFORMED. 320=0 TEST FLAS=1 IF REAL TRANSFORM 330=0 RTEST: 340=0 TEST FLAG = 0 IF IF COMPLEX TRANSFORM 350≠0 360=0 370=0 REMARKS: 330=0 390=0 FRI II COMPUTED UCING FUTTERFLY FLOWGRASH SHOWN BY "Digital Gianal AROCESSING" BY ORRENASIMMSCHARER A.3:4. 400=0 THIS SUPPOSTINE UTILIZES APITHMETIC IN THE ROOM FIELD (SAIN 416=0 \Xi D BY "A NEW ALGORITHM FOR THE RADIX-3 SET". IEEE TRANS ON HODE 480=0 .SPEE. 940 tis 5000.0008 78. 4301=0 44+= THAT THE SOUND THE PROPERTY OF Control of the section of the second 4 - (=] 500= 罗图图图 (A)(2014年18月20日)(A)(2014年18月2日)(A)(2014年18月2日) CMENTION INCME 510= 580=0 530=0 · ◆◆◆ DECLARS INTESERS•REALS•CONRLED•*CONSTANTS: · ◆◆◆ 540=: 5511= INTEGER M1.ICOUNT.HREW.M2.MMM2.L.D.TVDE.R.R(2.LM1.R) 4 INTERER (1:1:12:0:11:12:13:RTE)T 5.-1 = 57°u= REAL ARG. TA. IB. ISA1. ISA2. ISA3. ISB1. ISB2. ISB3. AA. BB.CC. DD 580= REAL ABBOT.ABBOT.AIT.ABT.AST.BIT.BOT.BST.INVSDB 590= MIN1=SECOND(CP) 203=20PT+3.0Y \lesssim 0.0 \pm INVS03=1./803 610≈ ``` ``` المتألف شيد ولامانات THE STATE OF THE STATE OF STATE OF STATE OF THE جβ ج. ا ~ ' ii = ~400= 了三个[18](下出户下户)。 757 = that 0 + 1 = 1 . 508.7 \cdot 10 = 0. 23.0= 770= 村に告い世紀年刊の選手士 PRINT++"MLEWER="+M EWER TBH≃ DO SG I=8.*:505 7447 = ឱ្យប្≃ \mathsf{MKS} \cdot (\mathbf{I}) = \mathsf{C} \bullet \mathsf{MKS} \cdot (\mathbf{I} + \mathbf{I}) + \mathsf{S} \bullet \mathsf{M} \cdot \mathsf{C} \cdot (\mathbf{I} + \mathbf{I}) + \mathsf{MKS} \cdot (\mathbf{I} + \mathbf{I}) 810= 80 \mathsf{MKC}(\mathsf{I}) = \mathsf{C} \bullet \mathsf{MKC}(\mathsf{I} + \mathsf{I}) + \mathsf{S} \bullet \mathsf{MKS}(\mathsf{I} + \mathsf{I}) + \mathsf{MKC}(\mathsf{I} + \mathsf{I}) 820≈C FILL MWS & MWC ARRAY LOCATIONS FROM MY2+2 THRU N WITH COMPLEX 830≈C CONJUGATE OF LOCATIONS 2 THRU N/2+1 840≈ NUPPER=NUDWER+1 PRINT ◆ , "NUPPER=" , NUPPER 850≈ 880≈ J=NLOWER DO 81 I=NUPPER:N 870= 880≈ 5000 (J) \approx 5000 (J) 890= MKS(I) = -MKS(J) 900≈ 81 1 - ل.⇒ل 910= MOUT1=SECOND(CP)-MINI 920= PRINT . "LOCK UP TIME=" . MOUT1 930≈0 MINS=SECOND (CP) 940≈ 950≈C ♦♦♦ CHUFFLE THE IMPUT ARRAY USING EACE 3 COUNTER 960≈0 AND THEM DIGIT REVERSE THE MOS: *** 970≈0 JERG THE DIGIT ARRAY: 海流形念流 海海鱼岩 한민 공원 제1=1.세 1. = 1 × 1 H≈ 1 1月4月年 语图 211=1 1060≒0 COMPUTE THE REMERIED DISIT MALLE EN N: 1070= 25 NEFFE 1080= DD 84 M8=1⋅M 1090% かかわさまれっから 1100= 24 NAREV=NAREV+1500Mg(•) •• •**MMNG(•) 1111 =: 1120=0 CHSC: IF IMURRES I. RECOIRED ON THIS RHIF: IF CHREVILE.ICQUNT) GO TO 28 1130= 1140=0 NO+ CWAR ACHREVO % ACICOUNT): 1150= THER (MREV) TB=B (NPEV) 1160= ``` ``` 1 = 12,12 16.00 មានមាល់ នេស្ស គំព្រះក្នុ 1377 = 1 710= 950 1D 6-9 132개부 관위 SUMETMES 1336= 1340= 1350=0 1360=C ••• ARRAYS ARE NOW SHURFLED.••• 1370=0 R=1: REAL ARRAY & CONVERSION IS NOT REQUIRED 1380=0 R=0: COMPLEX ARRAY & CONVERSION TO R(U) FIELD REQUIRED 1390=0 1400=0 1410=0 CONVERT A + BU 1420=0 TEST FOR REAL OR COMPLEX ARRAY 1430= IF (RTEST.ED. 1) 60 TO 64 1440= XCONIT≈SECOND(CP) 1450= DO 63 I=1.N 1460 = AA=A (I) 1470= P = B \in I 1480 = BBMS03=BB*INV503 1490= 8+I+=88-PPX009 1500= 33 B(I)=-2.0+BB%303 1510= PRINT. TIME TO CONVERT RESM (TO ROLE = ".) TOTAL 1520= 64 CONTINUE 1530=0 ••• ग्राम्या ए उस्त उस्तर्भावतालम्: ••• <u>†540=:</u> 16 1 = 1 S. 11 = 1 \oplus 0.0 = DO 30 L=1.M 1310=0 1820=0 THE INTERER D IS THE DISTANCE PETWEEN PUTTERFLIESSELS 1830=0 WHICH HAVE THE TAME COMPLEY TWINDLE PACTOR: : (TR) 1640=0 1350= [i≈ · • •; 1 - - 11=1 1670=0 TYPES OF BF IN STAGE WHICH USE DIFFERENT TE 1680=0 1690= LM1=L-1 1700= TYPE=3++LM1 1710=0 ``` ``` 1 '- : =: thailes distretifis differ alth there is the transfer each control to the form of the transfer IS: P=M-U 15-50≈ THIS LOOP INDEXES THE BE WITH SAME TES. INDEXES THE TEL. 1910=0 1920=0 AND CONVERTS TO P(U) NOTATION 1930=0 1940= DO 40 J=1,TYPE 1950=0 FIRST STAGE HAS NO TELS SO SKIP TE COMPUTATION IF(L.50.1) 50 TO 60 1960= IF(J.EQ.1) 50 TO 60 1970= 1980≃ JM1=J-1 1990= 88=WKC (JM1 •k1+1) 2000= BB=-580 (JM1 +81+1) 2010= BBMS03=BB • INVS03 TEAS=AA-ABXSOS 2020= 2030= TFB2=-2.0*BB%503 2040= AA=WKC(UM1 ◆K2+1) RP=-MXTCUM1+XS+1> 2050= =0505 BBNS03=RB•IHVS03 2070= TERB=AR-PBMEDE 2080= TFB3=-2.0•BBX503 医食物医 II CUMT=II COMT+1 2110≖ -0 रणभागा गुरुषा हा F.D. El [] = . * 5 * [I2=I1+P 2130= 2170= 13=11+8+8 9180=0 a 1 9 0 = C IMIDALE THE BE IMPUTO AND STORE RESULTS ON TEMP LEASING : 2200=1 2210= A!T=A+[1+ \varphi_{i}(x_{i},y_{i}) \in \mathbb{N} = 0 1:17=F + [1 + IF L = 1, HO TRIS ARE REQUIRED: 2230=0 2240= IF (L.E0.1) SO TO 61 2250= IF(U.E0.1) 68 TO 61 2260= AMC=A(I2) +TFA2 2270= BXD=B(I2) +TFB2 ``` ``` 235 No. Carlot House for State Control • • • 4 - 2 11115 reserves. -2 * F = .a PT=(a + TT) + + = E = 1 = 1 ⇔ ، الماج 3441 = . (M4)378 796 BF: 3450±0 12 74 6 = 1 1 7 2 12 1 7 2 2470≈ F (II) = BIT+BET+FST 2480≈ A3B2T=A3T+B2T 2490∈ ASBST=AST+BST 2500= A(12)=A1T+B3T-A3B2T 2510= B(I2)=B1T+A2T-A3B2T 2520= A(13)=A1T+B2T~A2B3T 2530= B(13)=B1T+83T-82B3T 2540= 50 CONTINUE 2550 = 40 CONTINUE 2560= 30 CONTINUE 2570= MOVER-SECOND (CP) -XINN 2580= PRINT . "MOVER " . MOVER 2590=0 2800=0 • • • CCHWERT PACK TO A+BU NOTATION 2810=0 2620= CODHET=CECDNE-CP+ 2630= ## 70 I≃1.N 00=8 (I) 2640= 공용되어는 DD=P・D) 3660= 海上下。宝色的宝色形像的。每 S_C 1 1. = . - PRINT••"NO. OF TH CONVERTION = "•!>CUNT 2720≃ FETHER 2730= 2740=0 2750=0 END OF TUERDUTING PRITEU උදියිරා≖ා 2790≈ 2800≈●588 2810≈●587 ``` # Appendix D. Radix-5 FFT Algorithm This section presents an algorithm for computing the FFT based on decimation-in-time of the discrete Fourier transform defined by: $$X(k) = \sum_{n=0}^{N-1} x(n) \exp(-j2\pi nk/N) \quad k = 0,1,2, ... N-1$$ where X(k) and x(n) are complex valued. This algorithm restricts the length of the sequence to be $N=5^m$ where m is an integer. In this appendix a FORTRAN subroutine FFT5TF is listed for computing the radix-5 FFT. This subroutine computes the single-variate complex Fourier transform or performs the calculation for one variate of a multivariate transform. #### Arguments A = Real portion of the complex data sequence to be transformed. It is dimensioned to length N. B = Imaginary portion of the complex data sequence. It is dimensioned to length N. $M = Exponent of 5, where N=5^{M}$. N = Length of the data sequence (N=5^M). IW = Work vector of length M. WKC and WKS = Storage arrays dimensioned to length N and used for sine and cosine look up tables. - Usage. For a single variate forward transform: -
(1) Specify the input sequences A and B along with the parameters M and N. - (2) Dimension A,B,IW,WKS and WKC to correct lengths. - (3) A and B are the output real and imaginary portion of the complex vector X(k). ``` PHOSE OF MICH. CAR CARETERS A. C. C. C. ± 1 11 = .. e juai ੂ46 ਵਰੋਂ 35 n=0 Pet 20 THE THEY WHELE IS BE IRRE FOR TO. z \in \mathbb{N}^{2} ON OUTPUT B IS REPLACED BY THE FOURIER TRANSFORM. 280≈0 M: INPUT EMPONENT TO MHIGH 5 IS RAISED.I.E. . N=5.+M. 290≈0 N: LENGTH OF THE ARRAY TO BE TRANSFORMED. 300=0 310=C IN: WORK VECTOR OF LENGTH M. 320=0 WkC: APPAY OF LENGTH N USED TO STORE COSINE TERMS 330=C WKS: APPAY OF LENGTH N USED TO STORE SINE TERMS 340=0 AUTHOR: JOHN D. BLANKEN. CAPT. USAF 350±0 360=0 370=0 400=0 START DE SUBECUTINE FETSTE: 410=[••• DIMENTION ALL ARRAYT: ••• 43 n=0 REAL A (NO + B (N) + ME) (N) + ME) the 430= DIMENTION HODDRY (15) * HEATE (15) 440= DIMENTION (BIOM) 450= 45.11=1 ▲TABER ♦♦♦ TRINGER OF TRINGER LER . . . THE ME TO LEAD f_{i+1} = f_{i+1} THE FIGURE 530= 540=0 COMPUTE THE INFO COLINE LODIUS TABLEL UITHG THE RELACTOR 55H=C RELATION HIP Se u≠i THETHER, HOET IN 570= OTHIOSENTHOTHETA 5.2m= 7 - . • . The • C, 411. 1=3IN (THETA) ゆ作的年 146 (1)=1。 610= 60k (1 (=0) 620= NEDWER=N 3+1 €30= 640= PRINT+ "NLOWER = " + NLOWER ``` ``` eβ[[n(••]]] () = N(D)) = ₹[[M=1] () × × × , →1.≈ CHURRLE THE INEUT ARRAY USEMA FHIR 5 COUNTER 316=0 AND THEY TIMES REVERSE THE DOLL ... उहार≉ह DO 22 M1=1+M 340≈ 850≈ 22 IW (M1) ≈5 COMPUTE BASE NOS. OF COUNTER 860≈0 870≈ MEAC=M 880= NBASE (1) =1 890= DO 21 J=2,M NBASE (J) = IW (MFAC) ◆NBASE (J-1) 900= 910= 21 MEAC=MEAC-1 920=0 ZEPO TH ENCOUNT(J) ARRAY 930= DO 24 J=1.M 940= 24 NCBUNT(J) = 0 SET THE INDICES FOR A & B ARRAY 950=0 960= ICOUNT=1 970= 23 MREV=1 980= k = M 990= DD 25 I=1.M 1000= NREV=NREV+NCQUNT(k) +NBASE(I) - 1010= 25 k=k-1 CN EGR JWAR 1.0000=0 1030= IFKMREM.LE.ICOUNTY 60 TO 86 T F = 1 100 - B : I \cap \Box \cup t : T : = T E 1090= 1100 = DO 27 I=1⋅M M(\lceil \square \cup \mathsf{P}(\mathsf{T} + \mathsf{T}) + \mathsf{P}(\mathsf{T}) \square \cup \mathsf{P}(\mathsf{T} + \mathsf{T}) + 1 1110= IF (MCDBMT) I).LE.4/ GD TD 28 11:11= 1130= \alpha = (1 + 1) \eta / \Omega (34) 1141 = CONTINCE 100 -1-100 -11+1 . . . 11- ti= IF (10J081.9€.8) 6D TØ 29 1170= 60 TO 23 1180= 29 CONTINUE 1190=0 1200=C ◆◆◆ ARPAYS ARE NOW SHUFFLED.◆◆◆ ``` ``` : . . . = 1914-- TNA=.F-~ thanks THIS 1888 (In I deep Jane 66), the Billion there is ○【1444年『中町町9町 ラブラ 1 -- 11= 1390=0 THE INTEGER D IS THE DISTANCE BETWEEN BUTTERFLIES(BF) 1400=C WHICH HAVE THE SAME COMPLEX TWIDDLE FACTORS : (TF) 1410=0 1420= D=5++L 1430=0 1440=C TYPES OF BF IN STAGE WHICH USE DIFFERENT TF% DISTANCE BETWEEN 1450=0 BF ENDPOINTS FOR THIS STAGE 1460=0 1470= LM1=L-1 1480= R=5++LM1 1490=0 1500=0 INITIALIZE THE TWIDDLE FACTORS 1510=0 1520= TFA1=1. 1530= TF E1 = 0. 1540= TFA2=1. 1550= TFE2=0. 1560= TFA3=1. 1570= TFBB=0. ∮ ⊏, □, ₁ = TERSET . . 1 + 3 () =:_ COMPUTE THE COINCIN TABLE INDICE: 1640=0 1650=0 1660= + 1 = 14 [1 12=3◆61 1670= 1680= 1 3=3+61 1690= 14=4+1 1700=0 1710=0 THIS LOOP INDEXES THE BF WITH SAME TES & COMPUTES THE TES: 1720=0 DO 40 J=1.R 1730= FIRST STAGE HAS NO TELS SO SKIP TE COMPUTATION 1740=0 ``` IF(L.EQ.1) GO TO 60 1750= ``` 1 → : ': = (DJ 50 I1=2**** D II=11** <u>.</u> . . . 1940= I4=13+6 1950= I5=I4+₽ 1960=0 TWIDDLE THE BF INPUTS AND STORE RESULTS IN TEMP LOCATIONS: 1970=0 1980=0 1990= A1T=A(I1) =0008 B1T=B(I1) IF L = 1, NO TF!S ARE REQUIRED: 2010=0 IF(L.E0.1) 60 TO 61 5050= IF (J.E0.1) 60 70 61 5030= A2T=(A([2) ◆TF62) + (B([2) ◆TFB2) 2040= BST=(A)IS: *TFBS: +/B: IS) *TFASY 2050= 2060= A3T#(A([3(◆TFA3)+(N)[3(◆TFP3) 2070= |B3T=(A)[3(◆TFP3)+(E)[3(◆TFA3) \ge 0.90 \pm A4T=+A+I4++TFA4+-+B+I4++TFF4 2090= \texttt{E4T} = (\texttt{A} + \texttt{I4} + \texttt{A} + \texttt{E} + \texttt{I4} + \texttt{E} + \texttt{E4}) + \texttt{E} + \texttt{E4} 2100= A5T=+A+15>◆TEA5>=+R+15>◆TEP5+ 2110= -B5T=+A+I5>◆TFB5+++B+I5+◆TFA5+ 3130= वात् रात् स्≥ 2120= 61 HPT=H+T2+ ≥ 1 ∃ ii= HST=H (15) 22mn= F5.T=F-15- 2210=0 adam=0 00MPHTE THE BE: 3230=0 ore Letter4 = tell Till 14 † ori FileT = 1 Till 17 Till Till Till 17 ≃ :∔ئےے 7:550= E. ME4=F .T-14T , -, -, il= 2270= REMB5=PST-B5T 2280= A4MA3=A4T-A3T 2290= A5MA2=A5T-A2T 2300= B3PB4=B3T+B4T ``` ``` 2450= 08B3B4=08 5+F+FF+ 2450= ј46568#3174•чоМез 2490= CA34=A1T+C4A2A5+C2A3A4 2500≈ SA25=S4B3B4+S2B2B5 2510≈ CA34=34B2B5+32B3B4 2520≈ CB25=B1T+C4B3B4+C2B2B5 2530≈ CB34=B1T+C4B2B5+C2B3B4 SB25=S4A4A3+S2A5A2 2540≈ 2550≃ SB34=S4A5A2-S2A4A3 A(I1)=A1T+A3PA4+A2PA5 2560≈ 2570≈ A(12) = 0A25 + SA25 2580≈ A(13) = 0A34 + 5A34 2590= A(14) = 0.034 + 0.034 A(15)=0A25-3A35 2600≈ B(I1)=B1T+B3PP4+B3PP5 2610≈ B(12) = 0B25+3B25 2620= 2630= B(I3) = CB34+5B34 2640≈ B(I4)=0B34-0B34 2650= B(I5)=0B25-0B35 2660= 50 CONTINUE 2670= 40 CONTINUE 2680= 30 офиттине \tau \in \{1, 0, \tau\} 2740=0 2750=0 END OF FETSTE CUBROUTING 2750=0 2770=0•• 2730=0 • • • • • • • • • 2,7 41.= EIII ೭೯೮೮೭♦೯೯೯ v : ! H= ◆F GF ``` ### Radix-5 FFT Theory This section presents the theory of the radix-5 FFT starting with the DFT definition and then decomposing the DFT equation using the decimation-in-time algorithm (Cooley and Tukey, 1965). This development closely parallels the radix-3 development presented earlier and consequently the radix-5 theory will be brief. The DFT X(k) is computed by separating the discrete time sequence X(n) into five N/5 point sequences (n must be of length 5^m , $m = 0,1,2,\ldots$). X(k) is given by the DFT expression: $$X(k) = \sum_{n=0}^{N-1} x(n)W_{N}$$ and $W_{N} = \exp(-j2\pi/N)$ (D.1) Breaking X(n) into five N/5 point sequences yields X(5r), X(5r+1), X(5r+2), X(5r+3), and X(5r+4). Using these sequences and Eq (D.1) gives: $$X(k) = \begin{cases} N/5-1 & 5rk & N/5-1 & (5r+1)k & N/5-1 & (5r+2)k \\ x(5r)W_N & + & 0 & x(5r+1)W_N & - & 0 & x(5r+2)W_N \\ r=0 & & r=0 & & r=0 \end{cases}$$ By regrouping exponents and making the substitution of: then Eq (D.2) can be written in final form as: Each of the N/5 point DFTs in Eq (D.4) represents an N/5 length sequence and the $\rm W_N$ terms in front of the summations are the butterfly multipliers. Eq (D.4) can be rewritten to reflect the N/5 point DFTs as: $$k$$ $2k$ $3k$ $4k$ $X(k) = A(m) + WNB(m) + WNC(m) + WND(m) + WNE(m) (D.5)$ For $N=5^2=25$ the Eq (D.5) representation is shown in Figure D.1 and uses a less cumbersome FFT, notation (Rabiner and Gold, 1975). X(k) is obtained by evaluating Eq (D.5) as: $$X(0) = A(0) + B(0) + C(0) + D(0) + E(0)$$ $$X(1) = A(1) + W_{25} B(1) + W_{25} C(1) + W_{25} D(1) + W_{25} E(1)$$ $$X(2) = A(2) + W_{25} B(2) + W_{25} C(2) + W_{25} D(2) + W_{25} E(2)$$ $$x(6) = A(0) + w_{25} B(0) + w_{25} C(0) + w_{25} D(0) + w_{25} E(0)$$ Figure D.1. First Stage Decimation for N=25. $$\frac{7}{25} = \frac{14}{25} = \frac{21}{11} + \frac{28}{25} = \frac{14}{11} + \frac{21}{25} = \frac{28}{11} + \frac{21}{25} = \frac{28}{11} + \frac{21}{25} = \frac{28}{11} = \frac{21}{11} + \frac{21}{25} = \frac{28}{11} = \frac{21}{11} = \frac{28}{11} = \frac{21}{11} = \frac{28}{11} = \frac{21}{11} = \frac{28}{11} \frac{28}$$ The above expressions explicitly describe the first stage decimation for N=25. The next step is to evaluate A(m) - E(m), which are also 5-point DFTs. The 5-point DFT for A(m) can be evaluated as: $$A(m) = \sum_{r=0}^{N/5-1} x_{N/5}$$ (D.6) which results in five N/25 length sequences: $$A(m) = \sum_{i=0}^{N/25-1} \frac{5im}{N/25} + W_{N/5} = \sum_{i=0}^{\infty} \frac{a(5i+1)W_{N/25}}{i=0}$$ $$= \frac{2m}{N/25-1} \frac{5im}{sim} = \frac{3m}{N/25-1} \frac{5im}{sim} + W_{N/5} = \frac{\sum_{i=0}^{\infty} a(5i+2)W_{N/25}}{i=0} + \frac{\sum_{i=0}^{\infty} a(5i+3)W_{N/25}}{i=0}$$ $$= \frac{4m}{N/25-1} \frac{N/25-1}{sim} + \frac{5im}{N/5} = \frac{3im}{i=0}$$ $$= \frac{4m}{N/5} \frac{N/25-1}{i=0} = \frac{5im}{N/25}$$ $$= \frac{4m}{i=0} \frac{N/25-1}{i=0} = \frac{5im}{N/25}$$ $$= \frac{4m}{N/25-1} = \frac{5im}{i=0}$$ $$= \frac{3m}{N/25-1} \frac{3m}{N/25-1} = \frac{5im}{i=0}$$ $$= \frac{3m}{N/25-1} = \frac{3m}{N/25-1$$ It can be seen from Figure D.1 that a(5i) = x(0), a(5i+1) = x(5), a(5i+2) = x(10), a(5i+3) = x(15), and a(5i+4) = x(20) for the 5-point DFT of A(m). The final expression for the A(m) 5-point DFT is given from Eq (D.7) where N=25: Figure D.2. Basic Radix-5 Butterfly Using Twiddle Factors. $$\Lambda(0) = a(0) + W_5 + a(1) + W_5 + a(2) + W_5 + a(3) + W_5 + a(4)$$ (D.8) $$A(1) = a(0) + W_5 a(1) + W_5 a(2) + W_5 a(3) + W_5 a(4)$$ (D.9) $$A(2) = a(0) + W5 a(1) + W5 a(2) + W5 a(3) + W5 a(4)$$ (D.10) $$A(3) = a(0) + W_5 a(1) + W_5 a(2) + W_5 a(3) + W_5 a(4)$$ (D.11) $$A(4) = a(0) + W_5 a(1) + W_5 a(2) + W_5 a(3) + W_5 a(4)$$ (D.12) From Eqs (D.8) - (D.12) the basic butterfly multipliers are derived to be: $$x+r$$ $2k+2r$ $3k+3r$ $x(k+r) = A(k) + W_N B(k) + W_N C(k) + W_N D(k)$ $$4k+4r + W_N E(k)$$ (D.14) $$X(k+2r) = A(k) + W_N B(k) + W_N C(k) + W_N D(k)$$ $$4k+8r + W_N = E(k)$$ (D.15) $$k+3r$$ $2k+6r$ $3k+9r$ $X(k+3r) = A(k) + W_N$ $B(k) + W_N$ $C(k) + W_N$ $D(k)$ $$k+4r$$ $2k+8r$ $3k+12r$ $X(k+4r) = A(k) + W_N$ $B(k) + W_N$ $C(k) + W_N$ $D(k)$ $$4k+16r + W_N = E(k)$$ (D.17) The Eqs (D.13) - (D.17) are shown in the twiddle factor butterfly of Figure D.2 where "r" is the distance between the butterfly and points. Since N=5r the butterfly multipliers reduce to constant complex multipliers of: These constant butterfly multipliers are computed once during the FFT computation and used in every radix-5 butterfly. #### Appendix E. Mixed Radix FFT Algorithm This section presents an algorithm for computing the FFT based on the discrete Fourier transform: $$X(k) = \sum_{n=0}^{N-1} x(n) \exp(-j2\pi nk/N)$$ The algorithm described here can accept an N length sequence which is factorable by 2, 3, 4, or 5. To aid in selecting an appropriate length sequence for this algorithm a list of numbers less than 50,000 containing no prime factors larger than five is listed in Table E. #### Arguments * A = The real portion of the complex data sequence to be transformed. It is dimensioned to length N. B = Imaginary portion of the complex data sequence to
be transformed. It is dimensioned to length N. M = Number of factors of N. WKC and WKS = Storage arrays dimensioned to length N and used for sine and cosine look up tables. N = Length of the sequence to be transformed. N must be an integer power of 2, 3, 4, 5, or a combination thereof. AT and BT = Arrays used in the subroutine for temporary storage of A and B during the data reordering (digit reversal). NFAC = Contains all the factors of N. NFAC is computed by the user and passed to the subroutine in the argument list. Dimensioned to length M. 222 IWE Contains the powers of 2, 3, 4, and 5 and is dimensioned to length 4. ``` IWK(1) = powers of 5 IWK(2) = powers of 4 IWK(3) = powers of 3 IWF(4) = powers of 2 (must be 0 or 1) ``` Usage. The subroutine listed permits a maximum of 11 factors which is adequate for any N less than 2^{16} with the factoring used by this subroutine. - (1) Dimension arrays A,B,AT,BT,WKC, and WKS to length N and array NFAC to length M. - (2) Factor N and store them in array NFAC. Array NFAC must contain the factors of N starting with the highest prime factor, 5, and continuing to the lowest, 2. E.G. $$N=480$$ $NFAC(1) = 5$, $NFAC(2) = 4$, $NFAC(3) = 4$ $NFAC(4) = 3$, $NFAC(5) = 2$. (3) Specify the integer powers of 2, 3, 4, and 5 in the array IWK. E.G. N=480 $$IWK(1) = 1$$, $IWK(2) = 2$, $IWK(3) = 1$, $IWK(4) = 1$ In general, $$N = 2^m 3^n 4^p 5^q$$ and $$IWK(1) = q$$, $IWK(2) = p$, $IWK(3) = n$, $IWK(4) = m$. - (4) Specify values for A the real part of data sequence and B the imaginary part of the data sequence. - (5) Call FFTMR(A,B,M,N,WKC,WKS,AT,BE,NFAC,IWK). - (6) A and B contain the real and imaginary part of the transform X(b). seeps nows, table E.I provides possible choices for N less than 50000 which have interer powers of 2, 3, 4, or 5 or combinations thereof. TABLE E. | | | 1 2 11 14 31 3 | | | |----------------------|--------------|----------------|--|---| | | h | | 20 100 1000 | THAN 5 | | i en la lettera e | | . ,, | | | | | | | | <i>;</i> | | • | | • | • | | | | <u>.</u> | j | • | ٤. | | • | - | • | ? | | | 1, | •
• ; | 3 | 7 7 | • • | | | , | | | | | • | | | • | | | 3 | | | • | • | | ₩ | • • | \$ | | | | .: | | <u>.</u> | . | • 3 = | | | | 11. | 7.3 | , , , , , , , , , , , , , , , , , , , | | 4 | Ĉ.⊾ - | 1 | 13
13
14
23
37
15
17 | | | 218 | 32., | | 23, | 3)
3 3 % | | ₹2. | 324 | 35 - | 3 / 3 | 334 | | | | : _ | - | . , | | * * . | · · | - 4 - | | 175 | | 43. | 625 | 54.7 | £#3 | 7 5 | | <u> </u> | | 75. | 768 | 830 | | 72u | 729 | | 363 | 972 | | 816 | 854 | 96. | 1125 | 1152 | | 1030 | 1024 | 1095 | | 1295 | | 1200 | 1215 | 125 } | 1237 | | | 1357 | 1440 | 1423 | 1503 | 15 36 | | 160. | 1626 | 1723 | 13 Ju | 1875 | | 1920 | 1944 | 2602 | 25 25 | 2145 | | 216. | 2187 | 225, | 23 34 | 2. 10 | | | 2530 | 255 | 25 92 | 2 00 | | 243. | | 363. | 3172 | 3125 | | 2084 | 2916 | 337 | 3455 | 36 36 | | 3291 | 3246 | | 3837 | 4 | | 3645 | 37ジレ | 384 / | | £ 2. | | ¥15. | 4:90 | 432, | +37+ | | | 4633 | 4501 | 485. | 3.) | 5:2 | | 518+ | 5u 1(| 5° 2 > | 57.63 | \$ (32 | | 51): | 0175 | 6144 | 3757 | 6.71 | | 548 | 6561 | 675 | 5912 | 12:1 | | 7293 | 7556 | 753 | 77.75 | 5 / | | | ~ ~ ~ | | ٦." | ; | | * <u>* * * *</u> * | | 9° | 91 | | | 1 2 2 | # 3 x * | , | | | | • - | | - | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | • | | | • | • | | | | 2 4 2 28 | | 4 4 | 4 | 15 | | 1 7,0 | 13824 | 1441. | 1+13 | 100 1 | | i 535. | 15492 | 1562 | 1501 | | | 1633+ | 13375 | 1728. | 17495 | 151 17 | | 19225 | 13432 | 1875 | 178 40 | 19 +1 | | 19083 | 2,2,50 | 2025 | 51737 | 2073B | | | 21 0 7 0 | 225, | 23. +1 | 23735 | | 21000 | 43.0 | 2+=1, | 25.3 | 2500 | | | | 27633 | 275+3 | 28125 | | 25925 | 25244 | 30000 | 31375 | 36721 | | 28800 | 29166 | | 32400 | 32765 | | 3 1 1 1 4 | 31250 | 32443 | | 36:06 | | 328J5 | 33750 | 3456J | 34992 | | | 35456 | 36864 | 3 75 ju | 33437 | 3888ü | | 3936t | 43630 | 40500 | 41361 | 41172 | | 4 3226 | 43740 | 450 | 45083 | 46656 | | +6875 | 48300 | 48600 | 43152 | 50100 | | ₹ 0 0 1 2 | 70 740 | | | | ``` COSTAN SECTION k 2 (₹). Ž } 1 ≠0 240=7 باعات ياتى או הברע יינע יער על עבוייים יי. THE IMAGINARY VALUE TO BE TRANSFORMED. 270=0 ON DUTPUT B IS PEPLACED BY THE FOURIER TRANSFORM. 280≄0 B IS DIMENSIONED TO LENGTH H 290≈0 M: NUMBER OF FACTORS M. 300≈0 H: THE LENGTH OF THE SEQUENCE TO BE TRANSFORMED. H MUST BE AN 310≈0 INTEGER POWER OF 2,3,4, ORS. 320≈0 WKC: DIMENSIO D TO LENGTH M AND CONTAINS THE COSINE TERMS FOR 330≈0 FETMR. WKS: DIMENSIONED TO LENGTH H AND CONTAIN THE SINE TERMS FOR TH 340≈0 E FFT. AT: DIMENSIONED TO LENGTH H AND IS USED TO STORE THE A ARRAY D 350≈0 UPING SHUFFLE \Im \phi \oplus \emptyset = \emptyset BT: DIMENSIONED TO LENGTH H AND IS USED TO STORE THE B A-4- D 370=0 UPING 380=0 SHUFFLE MRAG: CONTAINS THE FACTORS OF H. MUST BE PASSED TO THIS 390=0 TIHE IN THE ARGUMENT LIST. THE PARTERS NOST IS LISTED IN NEA 400≈€ ing a file of the second t IM (2) = 30 13 0 440=0 INF (3) = POWER DE 3 450=0 INK (4) = POWER OF 2. MUST BE HOR ! CHOY. 460=0 470=0 CALLS : HONE 480=0 ลมาลอด: เอียห ก. คยูลหรอห เลือก เมื่อสอ 31 JULY 30 440=0 200=0 310=0-- DIMERSION A GO . B GO . WKC GO . WKS GO . IWK (4) . AT GO . BT GO 520= DIMENSION NOOUNT(11), MBASE(11), MDIGIT(11), MFAC(4) 530= INTEGER R. TYPE, SAME, D 540= ``` ``` 717=0 1 30 m THUFFLE THE IMPUT ARRAY TO REMERSE DIGIT ORDER 740=0 750=0 SHIH=SECOND(CP) 760= DO 135 I≃1•H 770= 780= AT (1) =A (1) 790= 135 BT(I) = B(I) COMPUTE THE BASE NUMBERS OF THE COUNTER 800=0 810=0 820= MFAC=M 830= MBASE(1) ≈1 DO 100 J≃2•14 840= MBASE (UN ≒MARAC (MARC) ◆MBASE (UHI) 850= 860= 100 MEACHMEACHI 870=0 COMPUTE THE COURTER LIMITS OF FACE SIST 230=0 890=0 300= DO 110 J=1.00 I-(U)SARH=(U)TIBIUH 910=110 920=0 CERT THE MOTING OF APPAIN 海空的主流 el Terminollor esercio ลลก≃ ICOUNT=1 \mathbb{I}(0,0,0;\mathbf{z}) COMPUTE THE DIGIT REV VALUE OF H 1010#6 1020=0 1030 \approx 115 14学ピソニト r = d 10400 110 1 - 1 = 1 + 11 Tallouine (1) 3 (中国4) + (1) 1 (1 1.060 = 1070= 130 h=K-1 1030=0 CHECK IF SHUFFLE IS NECESSARY ON THIS PAIR 1090=0 1100-0 ``` ``` 1850= 150 - 300 1005 IHDUT÷IEIDHUH EHE HIM TEINT⊁• しこうりき PRINT+ THER. C. ! = +HEMSE () 1290-333 1300=0 ARRAY HAS BEEN SHUFFLED 1310=0 1320=0 1330=0 COMPUTE THE TRANSFORM 1340=0 RADIX 5 SECTION 1350=0 ARE THERE POWERS OF 59 1360=0 PRINT . "INK(I) = ".INK(I) 1370= FFTIN=SECOND(CP) 1380= IF (IWK(1).LE.0) 50 TO 200 1390= DEFINE PF CONSTANTS 1400=0 งอร์อ=. จักลกใค้สลังจานล 1410= ÇIM2=.9510565162952 1480= 1430= 01H4=.5877858586886 1440= \lfloor M \, 1 = I \, \log \left((1) + 1 \right) 1450= \operatorname{Iid}_{\mathcal{V}}(1 = \operatorname{Iid}_{\mathcal{V}}(+1)) 1460= DO 170 L5=1 · INC 1 1470= 142020 F = 11 F 1540= TYFE=F 1550= 156.00 INITIACIZE TWIDDLE FACTOR (TE) 1570=0 TFAL=1. 1530= TEAC 1. 17 401 ± TEM4=1. 15100 TFAS=1. 1620= TERI-O. 1630= TFR2=0. 1640= TFB3=0. 1650= ``` ``` 1 - THE ELECTION OF THE PARTY OF 1390= TFA3+WWC+JM1+WE+1 1840= 1850= TEBB=+NKC(IM1+KB+1) 1360= TEA4=WKE (UM1+k3+1) 1870= TFB4=-WKS(JM1+K3+1) 1830= TEAS=WKC (JM1+K4+1) 1890= TFB5=-WKS (UM1+84+1) 1900= 60 CONTINUE 1910=0 THIS LOOP PEPFORMS THE 5-PT DET. THE LOOP IS INCREMENTED BY 1920=0 DISTANCE D WATCH CELECTS THE NEXT BE WITH THE SAME TEC 1930=0 1940= U•M•L≈11 0€1 DO 1950= 12=11+2 1960= 13=12+8 1970= 14=13+2 1986= 13=14+8 1990=0 THIRDLE THE BE INPUTE ONE STORE PESULTS IN TEMP LOCATED 2000=0 2010=0 2020= ·11:6=716 2020= PITERITIE 15877 (51)4 + 5177 (51) A:=T53 ≧0∂0≤ 2020= #3T=(#(13)◆###3/-/8/13/◆###3/ 2100= -B3T±(A(I3(+TFF3(+)&(I3(+TFA3) 2110= 2120= · $47=(A) [A) +(A](T*(A) + (A) (A) 5130= | PART=(A)[5(4)PSR(4)](A)=TPS-(2140= 2170= 50 TO 68 2160= 61 ಗತಿ⊺≈ಗೆ ೧೭೨ 2170= B2T=B:12: 5190= A37=A+13) 5130= B3T=B(13) 2200= A4T=A(14) ``` ``` ್ರವ ಎಂತ್ರ್ಯಾಗ್ ತಿ⊛್ಯಾಪ್ಕಾಡಿ บังค์อลิธี=บัติวัง•์คลิศิลิธี 2390= 028384=0032+83884 2400= 2410= 348285=3IN4+82M85 $2B$B4=$IH2+B$MB4 2420=
04B3B4=0054+B3PB4 2430= 2440= 028285=0002+82885 2450= §48483=§IN4◆84M83 2460= $28582=$IN2+85082 2470= 048285=0094+82885 2480= 028984=0092+89884 C4A5A2=1IH4◆A5MA2 I2A4A3=IIH2◆A4MA3 2490= 2500= 2510= CA25=A1T+C4A3A4+C2A3A5 2520= CA34=A1T+04A2A5+02A3A4 2530= [A25±145394+1288855 2540= 3834=346265-326364 CPS5=P1T+04P0F4+08B0E5 2550= GB34=B1T+C4B3B5+C3B384 2560= 1889 = 148489 + 1885 1889 = 148489 + 1885 1884 + 1885 2570= Per e P1111年中17日中央17日中本中部開門中 = 1140 ج F + [3 + = + F = F + F = F] ∂ ಕ.೯0± P+17+=0974+1974 = 11 جَ جَ جَ F + [4 + = 7 F 74 + 7 F 74 3670= 3630= 新月15日本产品第一 新兴节 (A) (1 (1) (1) (1) a marke freely . Jake = 10 00 2710= 170 ALBERT TRADE END PADIN 5 2720=0 RADIX 4 SECTION 2730=0 PRINT . (10K (2) = 1 · 10K (2) 2740= 200 2750=0 ARE THERE ANY POWERS OF 49 ``` IF (IWK (2).LE.0) 60 TO 300 2760= ``` Parket COMPUTE THE INDEX CONTINUES 医多类的三角 2970= KI=SAME 2980= R2=2◆R1 2990= X3=3◆K1 DO 280 U=1.TYPE 3000= 3010= IF (10K (1).HE. 0) 50 TO 210 IF (L4.E0.1) 60 TO 211 3020= IF(J.E∂.1) GO TO 211 3030= 210 3040= UM1=U-1 TEAS=MKC (RMI+KI+I) 3050= TFBB==60000(1014146141) 3060= 3070= TFA3=00 (COM1+02+1) TREE=-WF (+ 1011 + FE+1 + 3050= 3090= (工厂) 4年 | 16世 | 17世 | 18世 18 | 1 TF:4=-WH:[+ 441+F:1+1+ 3100= 3110= 211 CONTINUE 3120=0 THIS LODE PERFORMS THE 4 PT DET DO 396 IT=9.0000 THE 4 PT DET 3130=0 P140= ಶಕ್ಷಣ= 1.1 ``` 3210= 3220= 3840= 3850= ggene Sgrie 3**230=** 3330= 3300= 3320= IF(100(1),00€.0) AD TO 813 IF(24.80.1) AD TO 813 3397♦(51/4−5697♦(51/651) \$67×A(12(4766+8)12(4766 r T~00[(*1860*5)] (*1860 A4[≈A)[4(*1884-6)[4(*1864 B4T=A(I4) ◆TFB4+B(I4) ◆TFA4 3290= 213 | IF+1.80.1+ 68 18 215 60 TO 217 B2T≃B(I2) 3310= 215 | A2T=A(12) ``` g () : (-) . . A(14) = A(MA) - EBMP4 B(14)=B1HB3+A2HA4 3530= 3540= CONTINUE 3550= 290 SONT THUS 3560= 280 CONTINUE PRINT . PADIX 4 DONE" 3570= 270 FND PADIX 4 PADIX 3 SECTION 3580= 3590=0 3600=0 3620= 300 PRINT+. THE CO. = 1. THE CO. ארב דאברב אווץ פסווברן סר פי IP/INF/ST.LE. 00 50 TO 400 CONSTE. SEEDISSAY STRAGE 3630≃0 3540= CM1=108 (3)-1 3650= 3000= 1100 P=1100 (5) DO 370 L3=1. Nor3 CAME= (***LMI) * (2**IN) (4) (35700≈ 3680= 3650= 3700= Lit1=Lit1-1 3710= TEARS. 3730= TFF3=1. 37711= : 1=1845 3200= 4 3=3 + 1 mi san ister 3,310= IF (Day 1 1 - ote 3220= 3-311- 3. Jul= 3360= 310 if(J.EJ.1) 55 TO 311 J171=J-1 TEAS=HKO (JM1+K1+1) 3370= 3330= ``` ``` 7 4~ 1. ± 400 -BT=A+10+1FA -B+13++1FA 23T=A+10+1F3+4++13++TFA 30-10-317 4040= 4 050 = 4060= 4070= 315 aat=axis> BET=F(IE) 4030= 4090= A3T=A (13) 4100= B3T=B(I3) 4110= 317 aeas=aeT+asT 4120= B2B3=B2T+B3T A(II) =AIT+A2A3 4130= 4140= B(II) = BIT+B2B3 PAW2=COMST+ (BST-B2T) 4150= PBW2=COMST+(A2T-A3T) 4160= 4170= PAWI=AIT-0.5♦A2A3 4130= PBW1=B1T-0.5+B2B3 4190= A (12) =PAW1-PAW2 4200= B (12) = PBW 1 - PBW2 4210= A(13) =PAW1+PAW2 4220= B (13) =PBW1+PBW2 CONTINUE 4230= 390 CONTINUE 4240= 380 4250= 370 CONTINUE PRINT++"PADIX 3 DONE" 4260= EHD PADIX 3 4270±0 ទានាការ ក៏បំពុទ្ធក្រាវប 4290=0 4590=0 유문[HT • • 1] M () 4 시 ·· - + = - 4300=400 IF (ID) (4), F.A. 4310= 4320= ři=ii 4330= SAME=1 4340= P=D/2 4350= TYPE=P TFAL=1. 4360= 4370= TFRI=0. TF88=1. 4380= 4390= TFR2=0. 4400= 81 = 1 AME 4410= DO 480 J=1.TYPE 4420= IF (J.E0.1) 50 TO 411 4430= JM1 = J-1 4440= TFA2=WKC (UM1+K1+1) ``` ``` 4450= TFB8=+WK3(UM1+K1+1) 4450= 411 I1=J 4470= 12=11+2 alT=a(II) 4480= 4490= B1T=B(11) IF (J.E0.1) 68 TO 415 4500= A2T=A(I2) +TFA2-B(I2) +TFB2 4510= 4520= 4530= 60 TO 417 4550= B2T=B(12) 4560= 417 a (11) =a1T+a2T 4570= B(II)=BIT+B2T 4580= A(12) = A1T - A2T 4590= B(12) = B1T-B2T 4600= 480 | CONTINUE PRINT+, "PADIX 2 DONE" 4610= 4620=0 END RADIX 2 FFTOUT=SECOND (OP) -FFTIN 4630= PRINT+, "TIME TO PERFORM FFT="+FFTOUT 4640= 4650=0 END OF FFTMR SUBROUTINE 4660=0 4670= 500 RETURN 4680= EHD 4690=◆202 4700=◆EDF ``` ## Earl Geritions Count for FFTMR The operations count for the factorization used in this algorithm is a function of (1) the number of butter-flies, (2) the number of complex twiddle factors, and (3) the number of times the cosine and sine difference equations must be computed. The number of butterflies in a mixed radix algorithm has been shown to be (Singleton, 1969): $$\sum_{i=1}^{m} (N/p_i)$$ (E.1) and the number of complex twiddle factors is: $$\sum_{i=1}^{m} (N(p_i-1)/p_i) - (N-1)$$ (E.2) where $N=p_1p_2 \dots p_m$. The radices in this algorithm are restricted to: $$N = 2^{r} 3^{s} 4^{t} 5^{u} (E.3)$$ Given the factorization in Eq (E.3) the radix-2 section (where p=2) has $$\begin{array}{cccc} \mathbf{r} & \mathbf{r} \\ \Sigma & (N/p_i) &= & \Sigma & (N/2) &= & rN/2 \\ \mathbf{i} &= 1 & & \mathbf{i} &= 1 \end{array}$$ (E.4) butterflies which require four real additions each. The number of complex twiddle factors for the radix-2 is given as: $$\begin{array}{ccc} \mathbf{r} & \mathbf{r} \\ \Sigma & (N(p_i-1)/p_i) & = & \Sigma \\ \mathbf{i}=1 & & \mathbf{i}=1 \end{array} (N/2) & = rN/2 \tag{E.5}$$ which requires four real multiplications and two real additions each. Notice that the N-l term has not been subtracted as in Eq (E.2). The N-1 term will be subtracted after the total operations count has been derived for 3, 4, and 5 factors and combined with factors of 2. Using Eqs (E.4) - (E.5) and the number of additions and multiplications required for each provides the operations count for the radix-2 section as: real mult = $$4(rN/2) = 2rN$$ (E.6) real adds = $$4(rN/2) + 2(rN/2) = 3rN$$ (E.7) The radix-3 section requires 4 real multiplications and 12 real additions per butterfly and 4 real multiplications and two additions per complex twiddle factor. Using Eqs (E.1) and (E.2) the number of butterflies for p=3 is: $$\begin{array}{ccc} s & s \\ \Sigma & (N/p_i) & = & \Sigma \\ i=1 & & i=1 \end{array} (N/3) = sN/3$$ (E.8) and the number of twiddle factor (neglecting the N-1 term) is: $$\sum_{i=1}^{S} (N(p_i-1)/p_i) = 2sN/3$$ (E.9) combining the additions and multiplication, required for each butterfly and twiddle fac or with Eqs (E.8) - (E.9) gives the operations count for the radix-3 section as: real mult = $$4(sN/3) + 4(2sN/3) = 4sN$$ (E.10) real adds = $$12(sN/3) + 2(2sN/3) = 16sN/3$$ (E.11) The radix-4 section has zero real multiplications and 16 real additions per butterfly with 4 real multiplications and 2 real additions per twiddle factor. The number of butterflies, where p=4, is given by: $$\begin{array}{cccc} t & t \\ \Sigma & (N/p_i) &= \Sigma & (N/4) &= tN/4 \\ i=1 & i=1 \end{array}$$ (E.12) the number of twiddle factors is: t $$\Sigma (N(p_i-1)/p_i) = \Sigma (3N/4) = 3tN/4$$ (E.13) i=1 Using the number of multiplications and additions per butterfly and twiddle factor in Eqs (E.12) - (E.13) gives the total operations for factors of 4 as: real mult = $$4(3tN/4) = 3tN$$ (E.14) real adds = $$16(tN/4) + 2(3tN/4) = 11tN/2$$ (E.15) The radix-5 section requires 16 real multiplications and 32 additions per butterfly with 4 real multiplications and 2 additions per twiddle factor. Using Eqs (E.1) and (E.2) where p=5 gives the total butterflies as: and the number of twiddle factors as: Combining Eqs (E.16) - (E.17) with the operations required for butterflies and twiddle factor in the radix-5 section gives the total as: real mult = $$16(uN/5) + 4(4uN/5) = 32uN/5$$ real adds = $32(uN/5) + 2(4uN/5) = 8uN$ (E.18) Using the results of Eqs (E.4) - (E.18) and subtracting the N-l complex twiddles provides the number of real operations used for butterflies and twiddle factors for the mixed radix algorithm. The expressions are: real mult = $$2rN + 4sN + 3tN$$ + $32uN/5 - 4(N-1)$ (E.19) real adds = $$3\text{rN} + 16\text{sN}/3 + 11\text{tN}/2$$ + $8\text{uN} - 2(\text{N}-1)$ (E.20) Recall that Eqs (E.19) - (E.20) account for only two of the three sources of real operations in this algorithm. The third source is computing the sine and cosine look up table. From the FORTRAN program in this appendix the expressions computing the look up table are: $$WKC(I) = C*WKC(I-1) - S*WKS(I-1) + WKC(I-1)$$ (E.21) $$WKS(I) = (*WKS(I-1) + S*WKC(I-1) + WKS(I-1)$$ (E.22) Each equation requires 5 real additions and 2 real multiplications and they are computed N-1 times for the mixed radix FFT. The real operations required to compute the look up table are: real mult = $$4(N-1)$$ (E.23) real adds = $$10(N-1)$$ (E-24) Combining Eqs (E.23) - (E.24) with the real operations for butterflies and twiddle factors provides the total real operations for the mixed radix FFT: real mult = $$2rN + 4sN + 3tN$$ + $32uN/5 - 4(N-1) + 4(N-1)$ = $2rN + 4sN + 3tN + 32uN/5$ (E.25) real adds = $3rN + 16sN/3 + 11tN/2$ + $8uN - 2(N-1) + 10(N-1)$ = $3rN + 16sN/3 + 11tN/2$ + $8uN + 8(N-1)$ (E.26) # Development of the Mixed Radix Digit-Reversed Algorithm Assuming that the number of points to be transformed satisfies $N=r_1$, r_2 , ..., r_m , where r_1 , r_2 , ..., r_m are integer values, the indices of x(n) and X(k) can be expressed as (Brigham, 1974): $$n = n_{m-1} (r_2
r_3 ... r_m) + n_{m-2} (r_3 r_4 ... r_m) + n_1 r_m + n_0$$ (E.27) $$k = k_{m-1} (r_1 r_2 \dots r_{m-1}) + k_{m-2} (r_1 r_2 \dots r_{m-2}) + k_1 r_1 + k_0$$ (E.28) where $$k_{i-1} = 0, 1, 2, \dots r_i-1$$ $i \le i \le m$ $n_i = 0, 1, 2, \dots r_{m-i}-1$ $0 \le i \le m-i$ For N=30 = 2x3x5 = $r_1r_2r_3$ and m=3 the input sequence x(n) counter is: $$n = n_2 (15) + n_1 (5) + n_0$$ (E.29) where $$n_0 = 0, 1, 2, 3, 4$$ $n_1 = 0, 1, 2$ $n_2 = 0, 1$ The output counter k for X(k) is: $$k = k_2 (6) + k_1 (2) + k_0$$ where $$k_0 = 0, 1$$ $k_1 = 0, 1, 2$ $k_2 = 0, 1, 2, 3, 4$ To implement the general digit reversed counter let the input counter n use the digit reversed multipliers of the output counter k: $$n = n_{m-1} + n_{m-2} (r_1) + \dots$$ $$+ n_1 (r_1 r_2 \dots r_{m-2}) + n_0 (r_1 r_2 \dots r_{m-1})$$ (E.30) For the example r_1 r_2 r_3 = 2x3x5 = 30 the digit reversed counter becomes: $$n = n_2 + 2n_1 + 6n_0 (E.31)$$ where, as before: $$n_0 = 0, 1, 2, 3, 4$$ $n_1 = 0, 1, 2$ $n_2 = 0, 1$ ### Appendix F. Singleton's Mixed Radix FFT This program was written by R.C. Singleton and published by the IEEE press in "Programs for Digital Signal Processing". It computes the DFT defined by: $$X(k) = \sum_{n=0}^{N-1} x(n) \exp(-j2\pi nk/N)$$ It also computes the 1/N scaled inverse Fourier transform. The subroutine listed in this appendix factors N into "square" and "square-free" factors and stores the results in an array NFAC. It then calls subroutine FFTMX to compute the complex Fourier transform, twiddle the data, and reorder the complex array to final order. Use of this subroutine for multi-variate transforms is described in the comments section at the beginning of the program. A multi-variate transform is basically a single-variate transform with modified indexing (Singleton, 1977). The subroutine listed permits the sequence length that has 15 or fewer factors. The smallest number that has more than 15 factors is 12,754,584 and if this condition is encountered an error message is printed. The transform portion of the subroutine includes sections for factors of 2, 3, 4, or 5 as well as a general section for odd prime factors. The special sections for 2 and 4 include the twiddle factor multiplication in these special sections instead of using the general twiddle factor section. "Performing the transform in this manner produces a 10 percent speed improvement over the general twiddle section" (Singleton, 1969). The special sections for 3 and 5 are similar to the general odd factor section but reduce the indexing required and thus improve the speed (Singleton, 1969). Arguments. The Singleton FFT for computing a complex single-variate transform is called using the following arguments: A = The real part of the array to be transformed and is dimensioned to length N. ${\bf B}$ = The imaginary part of the array to be transformed and is dimensioned to length N. N = Length of the input sequence N which must be a positive integer with no more than 15 factors. NSPN = The spacing of consecutive data values while indexing the current variable (in units determined by the magnitude of ISN). ISN = The sign of ISN determines the transform direction (negative for forward and positive for inverse). The magnitude of ISN determines the indexing increment for arrays A and B. Normally the magnitude of ISN is unity. NSEG = An integer value such that NSEG \times N \times NSPN equals the total number of complex data values. Usage. For a single-variate forward transform: - (1) Specify the input sequences A and B and parameters NSEG=1, N=transform length, NSPN=1, and ISN= -1. - (2) Dimension A and B to length N. - (3) Call FFTSNG (A,B,NSEG,N,NSPN,ISN). - (4) A and B are the output real and imaginary portion of the complex vector X(b). To perform a real valued, inverse, or multi-variate transform refer to the comments portion of FFTSNG. ``` • • • • დათ= ის.15თ თქალანნტის გი.1 მნამენი ამხი გები მდაბოექტი. 250=0 260=0 270=C APRAYS A AND B ORIGINALLY HOLD THE REAL AND IMAGINARY COMPONENTS OF THE DATA: AND METURN THE REAL AND 2(3.0 \pm 0.0) IMAGINARY COMPONENTS OF THE RESULTING FOURIER COEFFICIENTS 是净的事的 300=0 MUQTIMARIATE DATA IR INDEXED ACCUMUNA TO THE FORTRAM RED=0. ARRAN ELEMENT COLCESSOR From Figure WITHOUT LIMIT 3 \ge 0 = 0 ON THE MOMERS OF IMPLIED MIGHTEL THE CHETCHISTS. THE LURSCOTTER IS CALLED ON A HUR RACH WARTAIN. 330=0 THE CHUL: EGR A MULTIVARIHIE INHOTEDEM MAY EE IM HO 3411=1 354=i BANGET M IT THE DIMENTION OF THE CHEMENT CHATARIE. 370=0 MiRM [] THE TEACING OF CEMPECULIVE DATA VALUE: ישאות לאור באר באר באר האין איני לאור באר ביין PAGE: PIEG•P•P PRO 17 THE TATAL BUMPER OF SUBSIDE DATA WALLE . 41: = 4 - 07 440=0 18 881 1 / Section 10008 0011H Deep 108 5185 000 1 00 Ho The Mill Committee Transfer to be a section to 47.00= His he ife H | H | H | 4-11- THE SECOND HER THE TOTAL TO WHEN THE COMMENDE 1.55 TIME. 4,000 4 in the first of the control c 4 +0= 1 12 12 16 17 17 18 Sillin=" o (jAll), AFT (A.N.A),€MT•M(•1•+)(5.1 H=i CIPERTON MERCHANIST AND LINE THIS PETCHAFALANSANIANEA-10 500=0 530=0 ``` ``` DOUBLE ERFCISION DSTAK Ziiii=i: INTEGER ISTAK (5000) 710=66 HEAL BUTAK SOURCE ان≎ااڅ. 730=0 EQUIVALENCE (DSTAK (1) . ISTAK (1)) 740=(C EONIVALENCE (DSTAK)1).RSTAK(1)) 750≄0€ 760=0 770=0 DETERMINE THE SAUTORS OF H 780=0 дай≃ M = 0 MA = [AF: 141 - 910= + = MP - 1 (i) = le one,≒o,1) e∈Toex - - 1,= in PAH = 1HF HHF♦M°PM+ 2. 3.19= 、红布花 鱼 洋海红色的 与角的★红面皮 - 1 : = 45 GB OH.∓H.[ე≀H•H,]5 GB TO ∂H கு≏ம≃ 1-44 = 11, mm - 141 . - . = WHITE CIERRA HARACON ERA DE DE HELLE CONTRA ,- . ` i . = i - - = --- or provide the second of 4 - 1 - - • 1915<u>.</u> . 111 411 - - - - 1 . . . the state of s There is the implementation of 10 on ਤ = ਤ + ਹ 10.0=]] =]••∈ 1 11411= TF ()).LF.) 68 18 40 1050= IF (K.61.4) 60 TO 50 1 11-11= ``` ``` {\scriptstyle (\frac{1}{2}, le soluë.nitik wewê = M + ki + 1 IF (M+K1.61.15) 6D TO 120 1260= 127n= IF 07.80.00 50 TO 110 1230= J = kT 1290= 100 M = M + 1 1300= MEAC(M) = MEAC(J) 1310 = J = J - 1 1 380= IE ().ME.00 05 TB 100 1330=0 MARR = M - KT 1340= 110 1350= MASE = MEACOMA 声点 1 -- - = IF OFT, BT. OF MA F = MA COMPH. OFF. MA AS 1 50 0=00 ा = पुरिश्वितिशालि रंक्यक्र 1359=00 31 = 1 + MH E 1346=64 14100 = 그의 목 그는 무 너를 본 F = [[TEGI:MA" F.F. 1410=05 1450=00 · N = 1:TNGT:MA A+급) 1470=15 1440=00 FOTHER PROPERTY AND THE CONTRACT OF CONTRA 1 - --- 1686 = J1MeCe+4+ 14 = 0 = (1 / 1) STATE OF FRANCISCO 15010 = 0 FORMAT (Som PARCH - PET PHEHME) FR N HH (% AF THE) 15100 341 1564 ((=1.46) गरकार सब टी संसेवी बनात सेन संकर्भातिन 1 000 ine Transfer 1 = 1-11 = 1 TURROUTINE FETMICHARANTOTANAN HHM AIGNAMAKIAHTAGKARIALA. 15-00= 1570= Th Detail e Madaille in te ``` ``` 120 = 200 isb., 50 IF (130.6T.0) 60 TO 10 1760 = . 178 = -172 1.770= $120 = -:120 1780= 1790= RAD = -RAD 60 TO 30 1800= 1810=0 1820=0 SCALE BY 1/N FOR ISM .GT. 0 1830=0 1840= 10 AK = 1.0/FLOAT(N) TOT FO (=1.88T.180) 1850= चित्र = संत्रारक 1880= Fig. = Fig. • 1870= 20 COHINGE 1.2.36= 1 \in
\mathcal{A}_{H} = 0 និស្ សន្មិគិម = សន្ 1 ∋ππ= 1974 = 14T - INC 1910= _ា" = ២៩៩៧ 1 → - н= 1 = \pi(i) = \epsilon 1940=0 TIN. COT WHELE CHEE RESINITIACS FOR A CITY OFF. · = - 1 ---- MA^{\circ}F = M - FT 34000= Ме £ = Сей (Ме £) - 1,1 1,= (1) 1) = TE (FT.HT.)) MH E ≈ MA Wolfen((K)) (MACE) SHADE COMPLETE FOURTHE TEHN FORM ~ IITO . =. 40 for = 1,00m(min n) 用 D部 (n) 5 m(n) e[0] = e_0 \cdot e_0 \bullet, for e_0 \cdot S \bullet FF \bullet \Theta FF \bullet \Theta 2017 h# NU = NIHOUR • PADO 30000 k k = 1 हेगायमं = T = T + 1 2100= IF (NEAC(I).NE.2) 60 TO 110 2110= ``` ``` 1 = 1 missing of externe - I TO SO (\mathsf{cor}_{\mathsf{c}}) = (\mathsf{cor}_{\mathsf{c}}) + (\mathsf{cor}_{\mathsf -1 = - [(•) 1 = ([(•] 1) + 51 THREE STATEMENTS CUMHENSATE FOR TRUNCATION -- -: 14 FORBED ARITHMETIC 15 03FD. SUBSTITUTE 5.5 (A) ••=+ 1••€(+ 0,5 • τ 1. • • • • • E FIRE - BIRE! • $ 1 E general results and Alberta. -1-. 1 D = At a relative times a + of TE 011.LE.W+JU/60 TO 60 £+,3 H= 140 (D 40) p \leftarrow p + p + 11 = 0 e64n= \u00an | 1 = Flight (44-1) / Ni)•DR•RHD e^{-50} = -0.1 = 0.0 \cdot 0.10 51 = 518(31) ວິດິດນ= ``` 5 ``` B(81) = B) + HJ A(k2) = Ak + BJ 2860= F1431 = 184 - AJ 2870年 kk = k2 + k3PAM 2330= IF (kk.LT.NN) 60 TO 100 2890年 kk = kk - MM 2966= IF (kK.LE.K)PAN GO TO 100 2910= 60 10 296 292n= 3=08495 2940=0 TRANTERRM FOR FACTOR OF 4 2450=6 29-0= 110 IF (MEAN) (1).ME.4) 35 35 250 F PMH = 1 PPM 2470= F [FHR = F FHR 4 2436= gaan= 180 01 = 1.0 21 = 11 50000 most = military Ferman Into 2011/11/12 68 IN 150 3(0.51)= 1. 1. 2. 1 -1 one of the the term of term of the term of the term of term of the term of the term of the term of th 3114115 1.1 = 0.5 0 × • • + 1.1 • • € 0 + 0.5 - table [= i] ◆ 1 111.5 1 = 1 • . . . ; . 1 = . 1 =: ,- 1 11= 1 • • = - 1 • • - 140= 140 - = 1 (•) • = . H ್ : = ೯೭+ 1 + ೨೯+೬1 41; N= 11 Rus 150 +1 = ++ + + 2PAN F2 = K1 + F3PAM 3190= 13 = 13 + 13 PAN ५,२०० = HIP = HIKK) + AIRE! 32111= ``` ``` 1-11- 1 11 = 1 · m - - - Security Harman Committee 1 - - 1= 1 + = --- 1 - Fem • 1 5 + (*) (= A(K2) = A(P)A(2 - B)P + 32 3410= B(KP) = A PP+SP + BJP+CP 3420= A(K3) = AKM+03 - BKM+53 3430= B(K3) = AKM + S3 + BKM + C3 3440= KK = K3 + KSPAN 3450= IF (kK.LE.NT) 60 TO 150 3466= 3470 = 170 KK = KK - NT + UC 3480= IF (KK.LE.MM) GO TO 130 3490= IF (kk.LT.k§PAM) 68 TO 200 3500= kk = kk + kSPAN + INC 16 086.LE.300 60 TO 180 35111= 35.20= TE (K38AN.80.30) 68 T8 350 3530= 50 TD 40 3540= 180 AND = AND + ROM भेटल = भटल - स 3 - ⊆, = BER = BEM ~ AUM 356.0= ErM = ErM + ∺ ∂ - 5 . H= JE (1.86.0.0) 68 75 160 35.50= Stant (and more) a mire q =_{C(1)} (p) \in \mathbb{R}^n THE HEAL FLATE OF TO STORE -.11# 564 ID 178 F., 11= -10.43 \pm 0.000 = 10.43 \pm 0.000 = 0.0 11 Course of the control property of A. D. Think 11000 ڪائا جي ر 19 (1) 37311=1 374H=0 TRAN FORM FOR PACTOR OF 5 (OPTIONAL LODE) 3750=0 37∺0= 210 (62 = 672••> - 672••8 ``` The state of the second ``` * →·• == • 1 h = 3421 - - - - سايسه د BK = BKF + C72 + BUF + C2 + BB 3450= 52●M A + 672●M AA = 1.A 3960= BJ = BKM+S78 + BUM+S8 3976= 3980= A(k_1) = Ak \sim BJ A(K4) = Ak + BJ 3990= B(K1) = BK + AJ 4000= B(K4) = Bk - AJ 4010= AK = AKP+02 + AUP+072 + AA 4020= BK = BKP+02 + BJP+072 + BB 4030= A : = AKM•S3 - AJM•S73 411411= 411501= 多少 = 16kM◆522 - 16 60◆5222 A1621 = H6 - 82 411m11= 4070= A(4 -) = H4 + 6.5 411/3/11= 411-11= RR = R4 + RSPAN 4100= IF GARLI.MMO 60 TO 280 41111= FR = FR - 택턴 4120= TE OKK.LE.K SHOO 65 TB 220 41300= · · : - ...- ~ → 1 (51) = 41911= KSEMI = K EHIL y THHU = F THUS F 40000 TE (+.80.0 →) TE 100 4-111= 48 00.00.70 G TD 210 4-211= (E. O. E.) G. B. 10 250 4/300= 4040= ↓ • t , = Contract to 1 = : : 1 : 4-6.11= 51 = 510(51) 4270= i(\mathbf{k}, \mathbf{k}) = \mathbf{1.0} 4880= \mathbb{E}(\mathbf{k}(t)|\mathbf{F}) = 0.0 4890= 1 = 1 4300= 4310= 240 (k(J) = (k(K) +(1 + $k(K) +$1 ``` ``` . . . 11-1-1 h1 (0) = h(6) + h(82) 47111.5 4510= Bk = BT(J) + Bk 4920= 01 = 1 + 1 4530= AT(t,t) = A(kt) - A(k2) 4540= BT(J) = B(k1) - B(k2) 4550= k1 = k1 + kSPAN 4560= IF (k1.LT.K2) 68 TB 260 4570= \mathbf{\hat{H}}(\mathbf{k}|\mathbf{k}) = \mathbf{\hat{H}}\mathbf{k} 4580= B(KK) = BK 4590= k1 = kk 水金 二字字 医多种种 460m= 4F.1 ()= 1 = 1 4620= 270 k1 = 11 + 8386b 88 = 88 + 888AB 46.30= 4-411= + + + + á* = do 4-500 F: = 1 5. 1-,-,11= 4-111= H I = 11.11 $: = m. n 16-11- 4---- · = 1 en i transferiore (n. 1911). 4.76(1)= Element Francisco + Bit 4 , e. n = 4.7.70 = कि प्र.ा. कर की उत्ति हरेग 4. 500 4,7400 A CONTRACTOR OF THE CONTRACTOR H4 = 1544 48300= 용다음(= BK - A3) 4-:40= J = J + 1 4350= 3F (3.LT.⊬) GD 78 ∂20 4860= KK = KK + KSPNN ``` ``` = 1 = 1 + 0 0 (• 1 = 1 • 1) 4 1 3 1 E 1 =\langle e_{-1}, e_{+1} \rangle = 0 muquet be belbfelt. ラカラカーバ |71 = 0.52/73≥◆◆2+51◆◆2/ + 0.5 falled in Eq. S1 = 01 € S1 5070=0 02 = 01•02 5080=0 5090= 320 01 = 03 5100= 58 = 51 kk = kk + KSPAN 511n= 5120= 330 AK = AIREL A(KK) = 62◆Ak - 52◆B(KK) B(KK) = 52◆Ak + 62◆B(KK) 5130= 5140= RR = RR + BOPHM 5150= IF HAR.LE.HTH 50 TO 336 5.150= AF = 31 •> € 51711= [a = 71•0 € + 61•3a 5180= Ca = 61•Ca ~ HK 5190= 58 = 88 - MT + 87569 3.211H≈ IF WK.LE.KSPNNO 65 TO 330 5210= rh = hh = - (FMH +) 气速点 0 = TE (N.) E.MM: 48 TO 310 马马马的金 - - - - = 역, 기 전 14 = |(i,j)| = |(i,j)| (-1) 40= -11 = 110 \text{ } 10 Sec. 1111 (# 所作 三二代 医二甲甲酚磺酚酚酚 红茛树木 5-10= ¹²i <.÷ H= जा रहा उत्तर 5, 3, 3, 11 ±1. ्राच्याचे कार्याच्या करें स्था कार्याच्या विश्वास्त्र कार्याच्या करें कार्याच्या कार्याच्याच्या करें कार्याच्या 5 - 4 to = SESPHOTENTIAL FEED SESSE FROTTE SESSE S. - 11-5 5551171 5370= 350 (HE)() = k_ IF 067.80.00 60 70 440 5330= 5/3/4/11= \rightarrow = +\Gamma + +\Gamma + 1 IF (M.LT.k) k = K - 1 5400= 1 = 1 54111= ``` ``` 1-0-3-0-2
((1+\epsilon)^{2}+1)^{2}+(1+\epsilon)^ - - - - - - - - 医尼亚伯曼 海流的 网络人名 医二进术 化环 ==,::::= 5590= 44421 = 40 ÷- + + ; = : E- = Easter B(kk) = B(k\beta) 5610= 5620= B(K2) = Bk RK = KK + INC 与63的= 5640= | k2 = K3PAN + K2 5650= IF (k2.LT.K3) GO TO 370 5660 = 380 \text{ kg} = \text{k2} + \text{MP(J)} 0 = 0 + 1 5670= K2 = NP(J+1) + K2 5686= 5690= [F (K2.6T.NP(J)) 6D TO 38∪ 5700= J = 1 5710= 390 IF (kk.LT.k2) 58 TO 370 5728= ikk = kk + IMf. 5730= '사용' = KSPAM + KB IF (k2.L1.k3) 68 18 390 5746= -16 066.LT.600 00 TO 380 5,75,00= 10^{\circ} = k3 5760= 5.70= ≔ы∃ 1∏ 440 与了名的主角 5790=0 REPROJECTOR FOR MULTIVARIATE THEO FORM ⊈ 1 to v± For = Bobbs £147€. 医细胞的 单 医纹染的 5. -. D= 50-17 H= 7 F = F + 1741 Sec. -. 11= ~_{1.~}, → · · = +근 = k군 +]100 18 98.11.50 55 TD 410 5 · · · · · · = 5 k = 5 k + 5 k * 5 ~, ·1!!= = r = + + - = m 5 -- 1 = IF OKK.LT.NT) 60 TO 400 5430= MARROW + TM - 54 = 54 5. 44 ロニ KK = KK - NT + UC 59502 IF (ka.LT.K.) 60 TD 400 ``` ``` LL.LECTE LW 1 + 6150= 450 NEAC()) ≈ NEAC()(+0+6EAC()+1) 1 = 1 - 1 6160= JE (J.NE.KT) 60 TO 450 6170= KT = KT + 1 6180= NN = NFAC(KT) - 1 6190= JJ = U 6200= J = 0 6210= 60 TO 480 622U= 3× - زار = زار 6230= 460 · k2 = kK 6240= \epsilon = \epsilon + 1 5-50= ភ្ន = សាក៏អំព័លាស H. PH. 0= 5-70= 470 3 (= 6K + 1) IF (1).66.82% 65 ID 460 法治治的主 Mari - = 11 ABAA≃ 480 Ka = NEAC(KT) 7 = 61 + 1 H-510= AR = MEHICLE F. 3.2 (1= <u>- 55 m≠</u> (\mathbf{y}_{t+1}) = (\mathbf{y}_{t+1})^{-\frac{2n}{2}}(\mathbf{1}\cdot\mathbf{1}). عدور جارواريم = 1; 14:11 = 4-1 * K = 146-15-1 e. 4 1 (i = 15-15-15 = -17-2 ---- 15 OFF.ME. D 65 75 496 -4 11= ``` 1.10 A - . .. H4/11= F.4:-11= A4411= ASTOR 6510= 2520-0 - I + 1 $\mathsf{MP} : \mathsf{J} := -\mathsf{J}$ MARE = INCOMACE 16 KKK.1.1.07 60 10 500 IF G.K.HE.J. 68 TO 490 IF COME.THE ON IN SOM ``` . 4 4 1 E - - 2: ::: - - - = g (1 + + + 1) = 1 + + + 1 + - -- ,-, t , = \kappa_1 = \kappa_1 - 100 <u> ភូមិម៌ា=</u> IF 081.NE.880 68 TS 530 6700= 6710= 540 K1 = KK + KSPAM \kappa 2 = \kappa 1 + 30.4 (k+NF)(\kappa)) 6720= 6730= k = -NP(K) 6740 = 550 - A(k1) = A(k2) 6750= B(K1) = B(K2) 6760= K1 = K1 - IMC ka = ka - INC 6770= IF (k1.NE.kk) 50 TO 550 6780= 6790= KK = K2 IF (K.NE.): 68 TS 540 គគ្គព្រះ= 81 = 88 + 83₽AN ы∄1 и= =۱۱ خ.ان.ط ਲਦੇ = 11 . P = F- + 1 m - - - 11 = - - - + - 1- A(k1) = Al(k2) BORTO = Blober E1 = E1 - 100^{\circ} HISH HE e. ⊲ 11= - +411= →F TEIF N F → ^C(1) = EHU (\sigma_1,\sigma_2,\sigma_3)_{1,2}\triangleq (\sigma_1,\sigma_2)_{1,2} # 40°H=+2 - 2 ``` ### Appendix G. IMSL Mixed Radim FFT The International Mathematical Subroutine Library contains a mixed radix subroutine which can perform the FFT of any positive integer length sequence. This subroutine was based on Singleton's article "On Computing the Fast Fourier Transform", Comm. ACM 10(10) 1967 in which he proposed several ideas used in the IMSL subroutine. As stated in Chapter III the program closely resembles Singleton's algorithm published in the open literature but the IMSL version has been copyrighted and the FORTRAN code is not listed in this paper. The IMSL description of the algorithm and its usage are included in this appendix for the convenience of the reader and a detailed development of the real operations count which was not presented in the main text is also in this appendix. ## Real Operations Count For IMSL Mixed Radix Algorithm A copyrighted mixed radix FFT is available through the International Mathematical Scientific Library (IMSL) on the CDC computer used at AFIT. This subroutine (FFTCC) can accept any length sequence N including prime numbers. It is based on an article written by Singleton, "On Computing the Fast Fourier Transform" published in 1967. Functionally this subroutine has few differences from Singleton's algorithm described in the preceding section. The factoring, twiddle factors, and reordering of the data is the same, however, the special sections for factors of 3 and 4 require 2 and 8 more additions, respectively, than Singleton's subroutine. Also this mixed radio algorithm uses the general factors section for odd prime factors of 5 or greater which further reduces the efficiency compared to Singleton's. As in the case of Singleton's FFT subroutine the real operations count for the IMSL subroutine is determined from the number of twiddle factors: $$\sum_{i=1}^{m} (N(p_i-1)/p_i) - (N-1)$$ (G.1) and the number of butterflies: $$\begin{array}{ccc} \mathbf{m} \\ \Sigma & \mathbf{N/p_i} \\ \mathbf{i=1} \end{array}$$ (G.2) where $N=p_1$ p_2 ... p_m . In this subroutine the factoring is performed such that $N=2^T$ 3° 4^t p_1^{ml} ... p_k^{mk} with the real operations count being derived from the FORTRAN coded subroutine FFTCC and the Eqs (G.1) and (G.2). The radix-2 section of FFTCC includes the twiddle factor multiplications with the butterfly computation. In this case there are rN/2 butterflies and twiddle factors to be computed using 4 real multiplications and 6 real additions giving: # real mult = $$4(rN/2) = 2rN$$ (G.3) # real adds = $$6(rN/2)$$ = 3rN (G.4) The radix-3 section uses sN/3 butterflies and 2sN/3 twiddle factors which require 4 real multiplications and 14 additions per butterfly and 4 real multiplications and 2 real additions per twiddle factor. Combining the butterflies and twiddle factors the real operations count for the radix-3 section is given by: real mult = $$4(2sN/3) + 4(sN/3) = 4sN$$ (G.5) real adds = $$14(sN/3) + 2(2sN/3) = 6sN$$ (G.6) The radix-4 section uses 24 real additions and no real multiplications for the tN/4 butterflies. The 3tN/4 twiddle factors require 2 real additions and 4 real multiplications. Combining the results gives: real mult = $$3tN$$ (G.7) real adds = $$24 t N/4 + 2(3 t N/4)$$ = $15 t N/2$ (G.8) All odd prime factors equal to or greater than 5 use the general transform section. Based on the FORTRAN program written by IMSL there are five sources of real operations in this general radix-p_i transform excluding the array indexing additions. First the complex multipliers are computed for the butterfly transmittance: real mult = $$2(p_i-1)$$ (G.9) real adds = $$(p_i-1)$$ (G.10) for each new factor p_i , e.g., N=7*4=28 and N=7*7*4=196 each require the same $(p_i-1)=(7-1)$ complex multiplications for the factor $p_i=7$. Second the complex twiddle factor multiplications are performed on the data array. Assuming N can be factored as: $$N = 2^r 3^s 4^t p_1^{m1} p_2^{m2} \dots p_k^{mk}$$ where p_i^{mi} represents the ith factor raised to some positive integer mi, the number of complex twiddles is $(mi)N(p_i-1)/p_i-(N-1)$. The n-1 term is
subtracted only once for each FFT, which means the intermediate result can be written as: real mult = $$4(mi)N(p_i-1)/p_i$$ (G.11) real adds = $$2(mi)N(p_i-1)/p_i$$ (G.12) The individual butterflies are computed next. The first output of each butterfly requires only $3(p_i-1)/2$ real additions and no multiplications. For each radix- p_i^{mi} there are (mi)N/ p_i butterflies in the FFT giving: real adds = $$(8(p_i-1)/2)(N(mi)/p_i)$$ = $4N(mi)(p_i-1)/p_i$ (G.13) Now the remaining portion of each butterfly is computed using $(p_i-1)^2$ real multiplications and additions. This gives a total of: real mult = $$N(p_i-1)^2 (mi)/p_i$$ (G.14) real adds = $$N(p_i-1)^2(mi)/p_i$$ (G.15) Finally the results of the butterfly operations are stored in the proper array locations requiring 4 real additions times $(p_i-1)/2$ times the number of radix- p_i butterflies. This total is: real adds = $$(4(p_i-1)/2)(N(mi)/p_i)$$ = $2(mi)N(p_i-1)/p_i$ (G.16) Combining Eqs (G.9) - (G.16) the number of real operations for the p_i factor becomes: real mult = $$\sum_{i=1}^{k} (2(p_i-1) + 4(mi)N(p_i-1)/p_i + N(p_i-1)^2(mi)/p_i)$$ (G.17) real adds = $$\sum_{i=1}^{k} ((p_i-1) + 2(mi)N(p_i-1)/p_i + 4(mi)N(p_i-1)/p_i + N(p_i-1)^2(mi)/p_i + 2(mi)N(p_i-1)/p_i)$$ + $2(mi)N(p_i-1)/p_i)$ = $\sum_{i=1}^{k} ((p_i-1) + 8(mi)N(p_i-1)/p_i + N(p_i-1)^2(mi)/p_i)$ + $N(p_i-1)^2(mi)/p_i)$ (G.18) Using Eqs (G.17) and (G.13) for the odd prime factors and the real operations count for factors of 2, 3, and 4 the total operations cound for $N = 2^r \ 3^s \ 4^t \ p_1^{ml} \dots p_k^{mk}$ can be written as: real mult = $$2\text{rN} + 4\text{sN} + 3\text{tN}$$ + $\sum_{i=1}^{k} (2(p_i-1) + 4(\text{mi})N(p_i-1)/p_i$ + $N(\text{mi}) (p_i-1)^2/p_i) - 4(\text{N}-1)$ (G.19) real adds = $3\text{rN} + 6\text{sN} + 15\text{tN}/2$ + $\sum_{i=1}^{k} ((p_i-1) + 8(\text{mi})N(p_i-1)/p_i$ + $N(\text{MI}) (p_i-1)^2/p_i) - 2(\text{N}-1)$ (G.20) As in any FFT the real operations associated with the twiddle factors have been reduced by (N-1) multiplications and additions because the last stage of decimation-in-frequency or the first stage of a decimation-in-time FFT require no twiddles. ### Appendix H. An Algorithm for C reputing the WFTA This program computes the DFT defined by: $$X(k) = \sum_{n=0}^{N-1} x(n) \exp(-j2\pi nk/N)$$; k=0, 1, ..., N-1 where the sequence length N is a product of the relative prime factors from the set (2,3,4,5,7,8,9,16). Program Description. The WFTA consists of the six subroutines PERM 1, PERM 2, MULT, WEAVE 1, WEAVE 2, and INISHL. Step One is to map the sequence x(n) into a u-dimensional array $s(n_1, n_2, ..., n_n)$. Step Two implements the "pre-weave" modules in subroutine WEAVE 1, one for each factor of N_1 . Each of the pre-weave modules contains only additions. Step Three performs a point by point multiply on the data array (subroutine MULT) of real constants derived from the small-N DFT algorithms. These constant multipliers are a function of the complex exponentials of $\mathbf{W}_{\mathbf{N}}$ and are the only complex multiplications required in the algorithm. Step Four implements the post-weave (WEAVE 2 subroutine) module which contains additions, subtractions, and multiplies by j. Step Five maps the u-dimensional array $s(k_1, k_2, \ldots, k_n)$ into the correct one-dimensional DFT x(k) according to the Chinese remainder theorem given in Eq (3.144) (McClellan and Nawab, 1979). Arguments. The WFTA is called using the following arguments. More arguments exist in this list than in the one given by McClellan and Nawab because array storage is minimized in this WFTA version. N = Transform length which must be factorable into mutually prime factors from the set 2,3,4,5,7,8,9,16. A list of acceptable sequence lengths is given in the leftmost column of Table 3.9a,b. XR and XI = The real and imaginary arrays to be transformed and are dimensioned to length N in the calling program. INIT = A flag to specify whether the call to FFTWIN requires initialization. INIT = 0 means initialization is required and INIT \neq 0 skips the phase. Initialization is needed when calling FFTWIN for the first time for a given sequence length. IERR = Contains an error code upon return from FFTWIN. If the DFT was successful IERR = 0; if an error occurred IERR = -1 or -2. There are two causes for an error: - (1) The transform length is illegal, or - (2) The program has not been initialized for the correct length N sequence. SR and SI = One dimensional working arrays of length $M = M_1 \times M_2 \times M_3 \times M_4$ which is the product of the multiplies required by the small-N algorithms. The value of M for any permissible N is given in Table H.l in the rightmost column. COEF = One-dimensional array length M used to store the constant coefficients generated by INISHL for the "weave" modules. INDX1 and INDx2 = One-dimensional length N mapping vectors for pre- and post-permutations of the data. #### Usage - (1) Specify the input sequences XR and XI with parameters N, INIT, IERR, SR, WI, COEF, INDX 1, INDX 2. - (2) Call WFTA (XR, XI, N, INIT, ERR, SR, SI, COEF, INDX 1, INDX 2). - (3) XR and XI are the output real and imaginary vectors. The error code IERR=0 specifies successful completion of the transform. - (4) After the initial call, use INIT≠0 as long as N remains constant. ``` existing the state of ! : - Common termination for the common to the common termination of com - 1111 = J-110 = A COMPANY OF THE TANK OF THE TECHNIT, ED. no cest 1947 de la servició de servición de servición de la servi .-, -: t = : F4+ = ,2 E, 61 ± राष्ट्राहर्म, हर, सर वेटराल्य र M=Seg•14£ • Marke ~ H. 1 · = e ∂u= IF (M. 50.0) and (C 100 286= IERP=-2 39n= PETURN 300=0 PROGRAM NOT INITIALIZED FOR THIS VALUE OF N 310=0 320=0 330=100 340=0 PERMUTE THE INPUT DATA 350=0 360=0 CALL PERMI (SR.SI.XR.XI.INDX1) 370= 330=0 3911=0 DO THE PRE-MEAVE MODULES 400=0 410= CALL WEAVE1 (3P+5I) 4-11=0 430=0 ON THE MESTER MULTIPLICATIONS 4411=0 CALL MULTICER OF COMPERNMENTS 450= 45.11=1 170= 4 - := - · 7-1-10-2 ecentric tes polent pale f_{i,j} H = 1 CAUL FERMA CIR. II. FR. II. INDUAL 5 RH = PETURN 54 n= 5501= EHIL [UBROUTING INTIHE (N.COEF.XR.XE).tHD\]-IND\A.(AD Sep. 11 = - , ' (+ - - MeE(1) + 2010 + MI(1) Problem in the comment was interested a continue of the end - UB3(3)+004(4)+008(8)+009(11)+00016(15)+001(01)16(+00)+001 5/41/4 600 = 101(3) (9) (4)(104 (6)) ``` COMMON NA MA MA NO MO MO MO 1 MO 2 MO 3 MU 4 610= ``` $. . . - : . . . - : . The same in the market . The same is a first = 1 = 0, =4) then 1 iii (+ = 1, then the section of the context . 4: 2 pel- 11 10 1. 1 - - I - 11 • 1. \omega > \varepsilon \pm j n.ganjekapan, takapan (k.-n. k)ababbet , DH= £ 9. 455-5. - 6. 5. 4. - 6. - 6. - 6. 4. 4. A11= DATA CD4/1.0--1.85--1.538841/69-0.5590169944-0.863871864- 810= 1 0.587785858523/ 326= 836=0 FOLLOWING SEGMENT DETERMINES HAUTORS OF M AND CHOOSES 840=0 THE ASPROPRIATE SHORT DET CUEFFICIENTS. 850=0 860=0 IEFF=0 870= MTI1=1 880= NH=1 390= ម៉្ាំមា≃ 1=311 MTG=1 910= वट्रा⊨ \text{Piol} = 1 M[13=1 वशी≈ 1=1]14 44 fi= 45.11≈ (45)4=1 [F(M.LE.U) 60 TO 190 PE II≃ IF(16•(m/16).80.80 68 78 50 97 H= IE+8•(M/8).E0.M) 58 78 40 4일H= IF.4• (M×4).60.M) 60 TO 50 9911= arkin• to to period to ₹₽ ₹₽ 14111-2 11141 - the life of 111500=30 14月1二月月 14m=1m 1 (I)=. (i) = [bi) 31 J=1 • 1€ 1 11 / 11= A TO COMMON COMMON OF 1.080 = 21 GO 18 70 111-11= 1100 = 40 1 = - 1111 {i 41 i=1 in 11-11- 下[1] () () () () () () () () 1130=41 60 T□ 70 1140= MT(1=4 1150=50 ``` HH=4 1160= ``` om kommente og kiljemijore dan og 7,5 dim k *. = 75,500 HOUSE, NO. 47 TO 150 1.350=1- 1 <400= 1 - 1 = - 1 -, -, 1 = 11 = - of ± s ⇒ ♦ sq. ♦(sc. ♦f •[s. IF(M.EQ.N) 58 TO 250 1370= PRINT . "THIS N DOES NOT WORK" 1386=210 1390= IEFF=-1 PETURN 1400= 1410=0 MEXT SEGMENT GENERATES THE DELICOEFFICIENTS AND 1420=0 1430=0 THE FLAG ARRAY. 1440=250 J=1 1450= DO 300 N4=1.ND4 DB 300 M3=1.MD3 1460= DD 300 M2=1.MD3 1470= 1480= DO 300 MI=1.MD1 COBF (J) =CD1 (N1) +CD2 (N2) +CD3 (N3) +CD4 (H4) 1490= 15iin= J=.1+1 CONTINUE 1510=360 FOLLOWING SEGMENT FOR INPUT INDEXING. 1520=0 1530= -1 = 0 7,2=11 1540= 15511= 1 = 11 15,115 * , 1+% k ≠ 1 11 = 4 1-111= [1:0=1:0H ◆1:1-[1:0] 1-21= !+"ı = '+→+|+|-+|+ 1630= r = 1 [15] 4411 (14=1+14) 16411= [16] 4 5 D (4 5 = 1 + PH) 1550= [(" 4 1) () = 1 + 144 \uparrow \text{ e.e. } \leftarrow z 101 211 111 = 1 + 1+4 amir.wm.40 ng 46 405 lmon≖405 15911≈ K = K - M 60 ID 405 1.7000= 1710=408 IMD×1 (J) ≠K ``` ``` ^{1.1} = 1 = 1 1 + 1 a famete at (-1)^{-1} \cdot (-1) y and t≠ = 3 + 1 60 TO 550 1910= 1980=556 52=P1+1 IF (MC.EQ.1) 60 TO 630 1930=540 M=1 1940= F1=M◆Mb-1 1950=620 IF ((P1/NC) •NC.E0.P1) GD TD 610 1960= 1970= M=M+1 60 TO 620 1980= 1990=610 53=P1+1 IF (MD.E0.1) 68 TO 660 2000=630 2010= M=1 \approx 1 = m \bullet m + -1 没有没有=546。 IF ∪ P1/H[0 •H]0.E0.P1/ 60 18 650 2030= m=m+1 ≥11411= 37 TA 640 ₹1851F ∂ಗಾಗ=೯೯೧ -54=F1+1 \in \hat{H}_{n}^{-1}(H = g_{n} g_{n}(H)) z = 1 [jii] $1 ii N4=1 • ND ខ្លាមនាមិន ∂6-40= The Alm Pro=1 • Pr 75 m - 1 1 10 7 - ±1 1 - 5 11000 • -1-01= المعاد المال يور #1 For # 41 11 1 = 1 + 1 -1 / m= -1 00 a jallaa⊨ + - T1,1 + 14 -1 := ETHI -1 →u= o isemprous connections for for the 1111 - is the solution of the expectation of the contract con • • • = members of the series of the series 66610= INTEGER INDUICE F & 501= --- . = 1 22511= k = 1 INC1=001-00 =الحاض ``` ``` - = - + 1 \neg v \equiv \neg v + v \mid v \mid v - ---- (\mathcal{F}_{\mathbf{0}}, \mathbf{p}, \mathbf{w}, \mathbf{p}, \mathbf{p}, \mathbf{p}, \mathbf{w}, \mathbf{ a growing comment is not a set of the - 4 : = PRIESER IN THE := ; 2470= K = 1 2480= INC1=Nfd -NA £4911= 48H-50H (+ 10H=50H) 2500= (OM-SOM) ◆SOM (NDS-MC) 2510= DO 40 M4=1+MD 2520= DO 30 NB=1.NC 2530= 3M+1=5M 05 00 2540= DO 10 M1=1-MA 2550= XR(INDX2(k)) = SR(J) 255 n= XI (INDX2 (k)) = $I (d) 8570= k=K+1 \mathbb{R}^{\frac{1}{2}(\frac{1}{2})} \mathbb{R}^{\frac{1}{2}(\frac{1}{2})} = 1/\Omega]=]+1 공목원 н=공연 0.1 = 0.1 + 1.140.1 ខ្នុំត្រូវបាន ទីប J≖J+IND∂ J= J+174 3 36111=411 PETUEN 2620=
{G}\oplus{i}\otimes H= 1113 SUBBOUTINE WEAVETISE. TIX ਰ640= i Damita ismaelhato, aispaistifatstogals, cass 4 - r- ". L. = 24.4 THE SPAN CONTRACTORS FOR SPAN FRANCISCO , - 77 (H.S.) - (" Pin=i) THE EDITORING TOTAL IMPLEMENT THAT - FOUNT PARTHER HAR . . Rib=1 , . . . 4 H = i J-15,11:21 27F 05 146 14F Pmys ◆ 1994 Portugate € - .11= दिस्र पिलिकित्त क्षा ♦ पिर्विक । हिस्स विकास q_{i_1,i_2,i_3} \approx 10^{-26} 1118 G = 1 حال⊢آن [iii] 2411 H4=1+HF ∂3:000× TO 230 H == 1 + H€ 2810≈ DO 880 M8=1+MB ``` ``` 2250 11 = 1461=146A F+1 The believe make believed , - S (1) = - (9e + 19e pr. 노기보다) The litter - + litel. . +. . = Timetia Timen Ein Inffili * :.= Stiffe Haltha etc [2] (4) ± -(2) (1) 化杨母 医二种形式 医利利氏连续 CAPP -= # + FR DES Artiman are a 17 lead ر≕ان ف خ 441.≃ ्राधक संख्या THE FOLLOWING FOLD INFLEMENT THE A FOLIC STREET _ट '4⊬.11=1 رَا≃ارً (اعراج 医伊格拉二氏 हाने जाम=1 310000= HEDFES=S+HDS+HDS-MEX 3010= MBHSE=1 3020= 3030= DO 840 M4=1+MD 3040= DB 830 H3=1⋅MC 3050= IO 820 N2=1⋅NB 3060= NR1=NRASE+1 3070= NEE=NEI+1 3080\pi NRB=NRB+1 3090= 1 + 문 국업= 1 3100= MR5=MR4+1 NRR=NR5+1 3110= 1457=1465+1 \leq 1 \leq 0 = 31 RH= . इन्होंस (इन्स्याह) सहस्र (अस्ट्रिट) (주위선) 여기는 (조실선) 역종=독표 3140= 31 Fill= [中国414年]二十四三四月时十月二十十十十十二日 5150= 3170= T1=5P) NP13+5P (NP5) T5=1P+MP1+-3P+MP5+ 3130= 31 90= 1년년부터 후 14년년부터 후 1분일T <.200 = (克里特)每5年(高温特)第三年出版(南) 10 = Francisco Establish (+) 144 +) = 1 (1 - 1 ₂) - 1 = . (: 2 . - 100 1 to . - - - - - - H-1844-1-1=3-4-1. 38 Hills ○日 (1997) =15-17 ,`11≎ 13=, 1 (He 3) + , 1 (ME 2) T7=31 (100 3) - 11 (100 7) - - - (t) = ्ट नम≈ T0=3](MBA E)+3[(M64) SI (HR4) = I (HRH E) - FI (HR4) 34(H≃ 71= 1 (100) (+ 1 (100 %)) 11.4 112 19= 1 111-11 - 1 111-91 In = Interpret Interpret 1. % 3.34 ñ≈ (1) (MPH) = (1) (MPP) - (1) (MPH) ं ्ना = ST+HT=+3 HRM+TC 33HD= SI (MR2) = In-T2 ``` ``` 7 · 11 = ___[← MAP 1 → = 1 1 + 1 → T + 24 + \cdots + m + 1 + 1 = 1 4. = 41.5 3.65 - 第二位的第三位的 1.66 - 3 TECOMING AND AND THE s 4 , (1 =) \underline{z} \to -; \, z : = . THE FULLWAITH ANDE IMPLEMENT OF IT IN THE 医乳脂 化二硫 5511 =1 - H= (अस-६८मा • • हिन्दु = ६५मा । 3530= THE UPPERSON IN THE FOREIGNET 35411= 14FH F=1 IC 1840 144=1.01 7, 4, E₁ 1, E Bank He IO 1630 N ≔1•NO DB 1680 N8=1.HB 3570= 35.56= NF1=NFA E+1 3590= 1+1 라마=등위자 36000= 1+5위원=8위원 3510= MF4=MF3+1 និស្សិស្≕ 1 + 4 단어=근데데 36.300= MRE=MRS+1 3544 1+3-3-6=7-3-11 海州 製作事 MRS=MR7+1 MR요=MR요+1 நித்தம்= 36.70= 14年1月=14年9+1 3680= MR11=MR10+1 示的争和=- 전문12=MF11+1 3.7 init= 해보1 S=##12+1 3710= HR14=HR13+1 5720= 116 (与=166) 4+1 5.7~\mathrm{B}\,\mathrm{G} = 146.1万丰16.15+1 374H= | 74日 1 T = 14日 1 日 + 1 2,715,115 JEHTHEMF + F [U] tends = 1 = 1 + 3 47711= 不利用 电子电流 医乳 医乳毒素 医电子电流 `. `` - : = The the state of the same 5-4000-18-45 a delighting 33111= [II] 1650 H=1.4 383911= 310 (0 = [0] 0 + [0] +4 (3.8 100= 30 (1+4 (±1 (3) −1 (3+4) 3354 ((= 1 + 5 a)) a DotIte ⊱ -3<\frac{1}{2}, \frac{1}{2}<\frac{1}{2} ⊝£ (ИВН Е и=0) 1 (+ы (Вх · · -.11= 5 - 1 H # . m + 145 1 ; ≡ , + + , = ; 4+ + ; 4, 1 7위 (전위 3) =60 (공) ~(4) 3.5.8(0)= हें हैं जेगा ≄ [평 : 대문독 : =:0 : A : +0 : 숙) ①P(付金子(=())+(−()(会) हिलेगाम= 3910= ②配け料料は無値に無い ``` Ę ``` 1,433115 ~F-145 E. (±0 (₹) = 1.展示特益(2016年) 1.年代 - ; = = Sec. (1) - - - = 1 + 1 + 1 + 1 + 1 + 1 + 1 41-1 E Decree 15 - 27 - 100 - 1 - 1 - 1 5 4 H 11 = + (1) (11) = (14) = f (12) A (NA 17) = A (NA 11) + A (NA 15) ्मिरिस्टीस्ट= सरस्पास्त्रम स्रिसीने1िर्द 44411= # (F) (1+ (1) + (1) (#) (#) 4 1111111= 4000 11= # (H#14) = [(11 + - 7 (15) 41.00 ·盖尔尔安内含(由于)的 411311= JEATE = NEATE 41:41:= [6] 1745 0=1*日 410000 40000 4070= UBA18=UBA18+1 अंग्रह्म सिव्ह 4880=1745 411-11- [0] 1750 (=1+4 بتجهر وأجماره أكاورون 4100= \mathfrak{H}(\mathbb{J}+4)=\Gamma(\mathbb{J})-\Gamma(\mathbb{J}+4) 4110= 4120=1750 CONTINUE 4130= [] [kMBHPE (=0 (1)+0 (3) 4140= SI (MR2) =0 (1) -0 (3) 4150= SI(NR1) = 0.(2) + 0.(4) SI(NRS) = 0.(2) - 0.(4) 4160= 4170= SI(NR5)=0(6)+0(8) SI (MP7)=0.061-0(8) 4180= 4199= SI (MR4) =0 (5) 48000= SICMPER=0.070 多【(特色多》=【(鱼) 4810= 4.530= [][(Mé⇔)=[(10)+[(16) 4-311= SI (NF 15) = T (10) - T (16) SI:NR13:=T:14:+T:12: 4240= [] (M# 11 (=T (14) -T (1∃) 4.25 H= SI(NR17) = SI(NR11) + SI(NR15) 4260= 4370e [[(10日1日) = 1] (10日日) + 7] (10日1日) 4∂⊜n= $I (M#14) = T (11) + T (15) 48-46- 1.00-1-0=001-0 oft H = feet of +15 4 - - 1 = 1 - 146-4 =146-4 -- 414 : 6-5 1 - the Leville Control of IF 006.00 .00 68 TG 300 4 3+.11=: 457 H=1 4 50 11=0 THE EDULGOING COTE INSUBMENT THE S POINT REE-WEBG. 4 2 9 (1 =) 44000 =: 4419= 44. 44 11= 141.14€ 2=2 ♦14.141 44400 HE great s≅ p • [r] • rH[rs + br] r HEH E=1 4450= MOFF=HIO 44-11= ``` The second secon ``` [if] 3411 M4=1•M[i 44. H= ्रिकेट र जार विर≡र्गकार 77-11= [6] - 1 ii tio = 1 • (4) 45000= Helmher Ethief 4510= 内部的14年1月1日日日 45 - 0= T1="PinNP1"+ PitHP1 SRIGHER Ei= Fibfe\Ei+T1 4530± 5분 (HP은) = (FHO) (H) = (음위) (H) 454n= $$ (691) = *1 4-,6,11= 4つらい= 11= 11 (new 1) + 1 (think) , 1 (Hemsé (=, 1 (Hem F)+T1 45. H= (ISBN 17-11RD) I = (ASN) I. 45516= 4590= ~ { ('++') | = ₹1 45000=310 NEASE=NEASE+NUDES 4610=330 4680=340 物名在多巴兰特尼在多巴米特亚的尼亚岛 JE (NB. NE. 9) 50 TO 700 यम्द्रिश=च्यास チャチャニ 4650=0 4660=0 THE FOLLOWING CODE IMPLEMENTS THE 9 POINT PRE-WEAVE MODULE 4670=0 4680=0 4700=0 NLUP2=10+NU1 4710= 4720= NLUP23=11+ND1+(ND3-NC) 4730= NBASE=1 4740= NOFF=NTI1 4750= DO 940 N4=1.ND DD 930 N3=1.NC 4760= 4770 = DO 910 M8=1.ND1 4780= NR1=NBASE+NOFF 4790= MR2=MR1+MBFF 4800= PAROMASAMEE AM 4810= NE4=NE3+NDEE NHS=HR4+HBFF 4820= MERSHAPER 4830= 4940= MERTHNER + MOFE 42-00 44 - =145 € +1405 = F 可用的时间中间中的 46-01- 194 (11=194 F + 14) F + 1 4-11= 4月19日二 ी मु=४ले रासल ५१ −्ल रासिन्छ र 4900= SP (NRASE) = SP (NRASE) +TS 4-111= (६सर) क्रिक्र प्रमान कर च 4920= T은=3단 (배요?) - 3만 (배요공) SRICHRED =TR 4930= T1=(P())P(1)+3P()P(8) 44411= 4'--11= ालिस्टान्स्री न रिनारिक्त स्त्री 4-11= m + [4m] + = [-. TAESR (NRAILESR (NRS) 4970= T5=5P (NP4) - 3P (NP5) 4980= SR (NR3) = T1+T4+T7 4990= 5000= SR (NR4) =T1-T7 5010= SR (NR5) = 14-11 ``` ``` 5020= [R+MP6+=17-14] 501304 FORETH CHIEF ISH ISH 501401= H (NH 7) = [H-12 Subma 3户(1945)(中)(5-13) 5.115.11± F (1444) = 1.2-15 500701= TB=/TicheDies/Linker T6=31 (H-3) - 1 (H--) ទីពភព= . FI (NEASE) = FI (MEASE) +TS 5,19411= Tア=5T(H台ア)+5T(Hキモ) 5d lini≃ T2=31 (16/2) - I (16/2) 51111= 5120= 5】(16)(3) = 16. T1=51 (NR1) +01 (HR4) 5130= 51411= TRESTAMENTALS NEED 515u≈ SICMMIT=13 T4=$1 (NR4) +$1 (NR5) 5160= 5170≈ T5=31 (M64) -31 (M65) SI (NGB) = 11+T4+T7 5130= 5171= (\mathbf{I} \cdot \mathbf{I} \cdot \mathbf{F} - \mathbf{A}) = \mathbf{I} \cdot \mathbf{I} - \mathbf{I} \cdot \mathbf{F} 5200≈ SI (NR5) = 14-11 SI (NR6) = T7-T4 5210≈ 5220≈ SI(NR10) = T2 + T5 + T8 SI(NR7)=T8-T2 5230= 5240≈ SI(NR8) = T5 - T8 5250= SI (NR9) =T2-T5 5260=910 NRASE=NBASE+1 5270=930 NBASE=NBASE+NLUP2 MBASE=MBASE+MLUF23 5280=940 IF(NC.NE.7) 60 TO 500 5290=700 5300≈0 5310=0 • 5320=0 THE FOLLOWING CODE IMPLEMENTS THE 7 POINT PRE-WEAVE MODULE 5330=0 5340=0 5350=0 5360=0 NUFF=NII1+NII2 5370= 5380= NBASE=1 5390= NUUP2=9+NUFF [6] /410 [64=14[6]) 54100= 10 710 MI=1+MOFF 5410= 54900= नेनेने 1≐ार्माल । हे राजा मिन Ho -=He [+,√AF ~- - h= 54411= 图 3 = 图 R ≥ + 图 B F F 5450= NR4=NR3+NDFF コヨロバキキャガニモア 5460= 5470= MER=HEE+MOEE 5480= PERMIT 54911= PROMESSMM 55000= [1=≲ને હાના છે તે હોલો છે. -, -, 1 11= कि=्में असी । चाला भेनल । 5520= T4=5P (NP4) +5P (NP3) T3=5P (NP4) -5P (NP3) 5530= 55411= TB=FR (NRB) +SR (NRB) 5550= T5=SP (NP3) -SR (NP5) 5560= SR (NR5) = 16-13 ``` ``` 5520= SP (MPP)=TS+TS+TA 后出来的主 "在)科学的(三丁写一下色 ---- A 171-77-75 F -. 111, ≥ [#+t+ \+ L+=TP=T4 56.10= 58 (H84)=T1-T4 5--- H= Tip. 19= T1=T1+T4+T2 70-411= SP+M6A3E+#3F+M8H3F++T1 5550= # (4#1) =T1 form to = 11= 11 (14+1) + 1 (14+m) 节点门前军 TH="Tryle | 1 (HEH) 5680= [] 4= ([() NE 4) + ([() NE 3) วิคษกะ 13=51 Gre4+- (I tree) 5788= 5710= TB=SI (NAS) - (I (MAS) 5720= SICHRECETALTS 5730= SI(NPS) = T5 + T3 + T6 11 (HPE) = 15-16 5740= 5750# 51 (M#B)=13-15 5760= SI(NR3) = T2 - T1 5770= SI (NR4) =T1-T4 5780= SI (NR7) =14-T2 5790= T1=T1+T4+T2 5800= SI(NBASE) = SI(NBASE) + T1 5810= SI(NR1) = T1 5820=710 NBASE=NBASE+1 NBASE=NBASE+NLUP2 5830=740 5840=500 IF (ND.NE.5) RETURN 5850=0 5860=C +++++++++++++++++++++++++++++++++++ 5870=0 THE FOLLOWING CODE IMPLEMENTS THE 5 POINT PRE-WEAVE PRIDUCE 5880=0 5890=0 5900=0 5910=0 5920= MORE=MD1 •MD2•MD3 NBASE=1 5930= 594 ()= DO 510 N1=1+MOFF 5.45.0= PARCHA P. PARCE # 44 5,4511= 网络高温姆克尔西姆 油芹 西海流的量 4.4-11= 1.4m 4 = 1.0m 5 M 10 1 = F ÷, = =: 经产品 经净净 医牙囊 [[4=5](F)(16-10) +3(F)(16-4) <u>ស្នាមួយ</u>= T1=5P+NH1++5P+NP4+ 6010= たりごり= TB#SR (MRB) +SR (MRB) 6.030= TERSPINES / HSR (MRE) SP (NP3) = 11-T3 604H= F.050= [P:MP1:=T1+TR 7克(阿里森 7克(亚 7克)的现在分词 1 在2克(阿里森)。 F. Her He edia H= SR UHE5) =12+14 SR (HRE) =T4 oti≾ti≃ 5090= SP (NP4) =T2 6100= T4#SI (NR1) -SI (NR4) 6110= T1=51 (HP1) +51 (NR4) ``` ``` T3=51 (the s) +51 (time 5) F-1 - 11= \mathsf{T}_{\mathcal{S}}^{\omega} = \{ 1: \mathsf{Cle}(\mathbb{R}) : -1: \mathsf{Cle}(\widetilde{\mathbb{R}}) \} m.] <0= F-1411= y_1^* \le (n_{H^2} + y_2) = (1 + f_1 + f_2) F.150= 【《郑帝本》#714下答 $\forall 1\forall \forall \for 15 15 H ⊝1 (10= √[10005 (=16+T4) H180= 5【 (1)研究) = [4 -1 30= 1 (1474)=12 \sigma_0^2 1110 = \sigma_1^2 11 nhà ř=nha√é+t #ETU#H 6610= #3210 = FILL SUPPROTINE MOUT CORESTANDER AND DE 6230= F-3411= ्रोतिवाहार अनुसर्वाहर होते वर्षा वर्षात्र वर्षात्र वर्षात्र वर्षात्र वर्षात्र वर्षात्र वर्षात्र वर्षात्र वर्षा ಕ್ಷಾರ್ಥಿಕ SR(1) (SI(1) (COEF(1) PEAL 6260= Tubmmer=U ur Gd ಹರ್ದಿಟ≐ CENTER PROPERTY F-(-11= 6290= 10 CONTINUE RETURN 6300= 6310= END SUBROUTINE WEAVE2(SR.SI) 6320= SR(1) • SI(1) 6330= REAL 6340≈ COMMON NA NE NO NO NO NO NE NO NO NO NO NE 6350≈ REAL (0.8),T(16) IF (ND.NE.5) 60 TO 700 6360≈ 6370≈0 6380≈6 6390≈0 THE FOLLOWING CODE IMPLEMENTS THE 5 POINT POST-WEAVE MODILE 6400≈∂ 6410≈€ 6420≈0 6430≈0 6449= Edin+Sdn+1dN=AADN 6450≈ NRASE=1 DO 510 H1=1.MOFF 6460= 6470≃ NR1=MRATE+MREE 6480≈ MES=MET+MOFF F-4 -11-= ्राम् हें ≋्राम र मार्ग र ह -51111 = Medade Selv Pé F.7.1 H ≅ 15 5 = 1 - 4 + 1 - - - 1.1 = ... + ... + ... + ... + ... - - ; : 医内室组集 TR=T1-1+ (44-5) T1=T1+08+08E3) n5411= ASSOLE T4=5[(N+2)+5](NP5) T2=51 (NP4)+51 (NP5) 6560= SP (HP1) = T1-T4 6570± F530= R4=T1+T4 H-11-411= .e/=13+16 # + 1+# × + = 1 × − 1
/- F.F. 1111= T1=31 (NBATE) +31 (NR1) 6610= T3=T1-T1(NF3) 662N= T1=T1+ 1 (H6/3) 663H= 664D= T4=58 (NRS) +58 (NRS) 5550= T2=(P (NP4)+(P (NP5) SI (NP1) =T1+T4 ტტტ()= ``` ``` \S[(NP4) = I[-T4] 6678= SIMMARY=TR-TS 医医溶红素 丁(24年月)二丁月十丁港 F. F. 411= e.Chh= (A) 140 A (B) A (B) 38 CH641 = 84 57111≈ MEA REVEN EXT F720=510 IF (160.166.7) 30 TD 300 6730=700 5.7411≈€ 高了写的事的 e. Penier THE FOLLOwing Color IMPLEMENT, THE 7 POINT AND LAWRENCE 6.7741=0 6780=0 らてきか事に 表名前的=第 6810= उंगेल• मिश≕नेनिएल MEASE=) 6830= NEUP2=8+MÜFF 6830= DD 740 04=1.00 684H= DS 718 MI=1.MGFF 快点货机车 NR1=68636+NOFF 6860= NRC=NR1+NOFF 6870= HRB=MR2+MOFF 6880= NR4=NR3+NOFF 6890= 6900= NR5=NR4+NOFF NR6=NR5+NDFF 6910= NR7=NR6+NOFF 6920= 6930≈ NR8=MR7+MDFF T1=SR(NR1)+SR(NBASE) 6940≈ T2=T1-SR (NR3)-SR (NR4) 6950≈ T4=T1+SR (NR3) -SR (NR7) 6960≈ T1=T1+SR (NR4) +SR (NR7) 6970≈ T6=SI (NR2) +SI (NR5) +SI (NR8) 6980≈ T5=SI(NP8)+SI(NP5)+SI(NP6) 6990≈ T3=31 (NE3) +31 (NE6) +31 (NE3) 7000= SR (NR1) = 11-T6 7010= SR6=T1+T6 7020= SR2=12-15 7030= SRS=12+15 7040= SP (NP4) = 14-T3 7050= (中) (14年5) 年 (4年15) Ç(in, n ≃ T1=5[:NAT+ [:NAA5E) 7070= Te=11-(1)(06-5)-(1)(06-4) 711-11= T4=11+ 10,00 - 1- 10,007) T1=T1+SI(M#4)+3I(M#7) 7100= T6=3P (NRB) +3P (NRB) +3P (NRB) 7110= TS=SR(MRR) + SR(MRS) + SR(MRR) 7120= 7130= TB=3P (NPP) +3P (NPA) +3P (NPP) SI (NR1) =T1+T6 7140= SI (NRB) = TI-TB 7150= SI (MR2) =12+15 7160= 21-51=(29H)15 7170= 7180= SI (MR4) = [4+[3 31 (NR3) = T4-T3 7190= SR (NR2) = SR2. 7200= SR (NR5) = SR5 7210= ``` ``` 7220= 这图《科尼奇》 #3.配合 7230=210 иВн "н=ивн "н+1 hBATE=KATE+MUURZ ?24fi=04ft IF (88.80.1) 60 TO 400 7250=3000 IF (NR.NF.3) 30 TO 300 726.0= 7970=0 7286=6 7890=0 THE FOLLOwing CODE IMPLEMENTS THE 3 POINT SOUTHWEAVE 7300=0 3 3 1 11=6 73800=0 7330=0 7340= NUMBERSHOPE 2350= MinF23=3•Mi1•Mi3-Mi3-Mi 7360= NBHSE=1 7370= - MOFF-MUI 73330= DD 340 M5=14ND 顶顶 医隔的 图4=1*86 7330= 7400= DD 310 M8=1.ND1 7410= NR1=NBASE+NOFF MRS=MR1+MOFF 7420= T1=SR (NBASE) +SR (NR1) 7430= SR(NR1) = T1 + SI(NR2) 7440= 7450= SR2=T1+SI(NR2) 7460= T1=SI (NBASE) +SI (NR1) SI (NR1) =T1+SR (NR2) 7470= SI(NR2) = T1 - SR(NR2) 7480= 7490= SR (NR2) = SR2. 7500=310 NBASE=NBASE+1 7510=330 NBASE=MBASE+NUDPS 7520=340 NRASE=NRASE+NUUP23 7530=900 IF(NB.NE.9) 68 TO 400 7540=0 7550=0 • 7560=0 THE FOLLOWING CODE IMPLEMENTS THE 9 POINT POST-WEAVE MODILE 7570=0 7580=0 7590=0 ++++++++ denne. 7610= MUURR#10+MICE \{a_{i,j}\}_{i=1}^{n} THE HE , 1 E → " ÷ = 1 7631 = MOFFEMA ?64H= DO 940 N4=1+ND 7650= DO 930 M3=1+HU 766.0= 7670= DD 910 M8=1.MB1 7680= NR1=NBASE+NOFF 7690= NESHMET + HOLEE 770u= Heidelteichtscheit .710 = THE AMERICAN STREET 7720= NRS=NR4+NGEF 7730= NEK=NES+NOFF 7740= NR7=NR6+NDFF 7750= NESHNEZ+NOFF NR9=MPR+MAFF 7760= ``` ``` 7770= NP 1 0=MP9+MBFF 7780= TB=1R+MPH F+-4R+MFB) 229h= T₹=०ले (संध्वें) मार करेले (शक्ते 1). 医克里氏试验检检查 医多种红斑 医多生多形 医性性多种多种 化二甲基甲基酚 医克勒氏 设度119年 181 N= 不再生下的4万丁(20万寸百) 783n= 3带《新帝彦》 # [3-5] () | () | () | 783n= 【4年【7+5前(6倍高)—5年(5倍高) 7840= T1=T7-5F (M84) - 5R (M85) 785u= T7=T7+38+1884)+38+18863 785u= ar ideni=in 18 \pm 81 (MBB) -81 (MBB) -11 (MBB) 7870= T5=SI (New) +SI (New) +SI (New) 78su= 7890= T골=5Ⅰ(MR골)+5Ⅰ(N주조)+5Ⅰ(N공유) 7906= SP_{i}(HRI) = 17 - 12 7910= 3R8=17+12 7980= SR (NR4) = 11-T8 7930= SB (NB5) = T1+T8 7940= [#7=14-TS 7950= SR2=T4+T5 7960= T3=SI (NBASE) -SI (NR3) 7970= T7=SI(NBASE)+SI(NR1) 7980= SI(NBASE) = SI(NBASE) + SI(NR3) + SI(NR3) 7990= T6=T3-SP(NP10) 8000= SI(NR3) = T3 + SR(NR10) T4=T7+SI(NR5)-SI(NR6) 8010= 8020= T1=T7-SI(NR4)-SI(NR5) 8030= T7=T7+SI(NR4)+SI(NR6) 8040 = SI(NR6) = 16 T8\pm SR(NR2) + SR(NR7) + SR(NR8) 8050= T5=SR (NR2) +SR (NR3) +SR (NR9) \beta 0 \in 0 = T2=SR (NP2) + SR (NR7) + SR (NR9) 8070= 8080= SI(NR1) = T7 + T2 8090= SI(NR8)=17-T2 8100= SI(NR4) = T1 + T8 8110= SI(NR5) = T1 - T8 8120= SI(NR7) = T4 + T5 SI (14R2) = 14-15 8130= 8140= SR (NRR) = SRR 3150= 多量(MB2)=(6分 英國(1946年) 主義國際 8160= 3170=310 ићноё=ићноё+1 5150==000 புத்த த≢புநின் இசுவ் புத்தி MRASE=MRASE+MUURES 8190=940 8200=400 IF (NA.EQ.1) PETURN [F:MA.ME.4/ GO TO 800 ○高記1 H= 8220=0 8830=0 324H=€ THE EDULOWING CODE IMPLEMENTS THE 4 POINT POST-WEAVE OF TWO ∂$511=1 \sigma(\sigma \in \Omega) \cong \epsilon 3270=0 8880=0 8290= NUUPR#4+ (NDE-NB) NUURBB=4+NT(P++NT(B+NC) 8300= NBASE=1 8310= ``` ``` 含含含的毒 [N] 440 H4=1+HN .: . .!'= [iii] 430 N3=1+mi 31340=]Ki 4-11 (t-=14146 8350= NF1=HFATF+1 13 3E.H.= 7md=He1+1 海湾产的= 연구 3=24분급+1 \beta \beta \beta \beta \theta = TRACESROMBASES+SRUMERS [[유급한 : 유리는 네트리프라마 교수를 등입니다. 용작원0= 34110± 「〒1=5+ (5+1) + 5+ (5+1) + 2 = (TBR= # (644 | 1 + 15) (44) H41H= 34∂11= TI1=8I(M#1)+8I(M#3) <4.50= TIBESIONEID -SIONESO 5440= [RT+09]=+32640+48] និងកីព= 19T-69T=(99M) 63 8460= SR(NR1) = TRR+TIR 8470= SP(NP3) = IP2 - II3 T[0=5](MEBSE)+51(MES) 8480= TizesIcmBekëvekichezv 34 +0= 8500= SI(NBASE) = TI0 + TI1 8510= SI(NR2) = TI0 - TI1 8520= SI(NR1)=TI2-TR3 8530= SI(NR3)=TI2+TR3 8540=480 NRASE=NBASE+4 8550=430 NBASE=MBASE+NLUPS 8560=440 NBASE=NBASE+NLUP23 8570=800 IF (NA.NE.8) 60 TO 1600 8580=0 8590=0 8600=0 THE FOLLOWING CODE IMPLEMENTS THE 8 POINT POST-WEAVE 8610=0 8620=0 8630=0 364 μ=0. 8650= NLUP2=8+(ND2-NB) მიგს= MUURES=8+MDS+ (MDS-MC) 8670= NBASE=1 DB 840 M4=1+MD 8580= 治病等的= TET 2336 M3=1⋅NC 370n= DD 320 N3=1•6K B710= 1497年14667月41 %हरु म= THE 2=14-1+1 4.7 Sattle 199 1= 35g+1 8740= MP4=P63+1 8750= NP5=N94+1 8760= 内尼尼=四尼馬+1 ×270= 1+890=590 8780= T1=38 (NBA3E) ~ 38 (NB1) 8790= 京房(特别自享居)= 高層(特別自宣居) + 京房(特別)。 조류HH : 174 (독유어 : 메스트) # 10 등 국 : 治溶肝血素 ##-1 0= (EAH) 1--(SHI) 42=(SHI) 43 8820= T4=58 (NR4) -51 (NR5) 8830= T5=3P (NP4) +5 [(NP5) 8840= T6=88 (NR7) -81 (NR6) 8850= TZ#SRINRZI+SIIINRSI 8860= SR (NR4) = T1 ``` ``` ਸ਼ਤਰਵੇਖ= 《尼·特尼本》="4+T6。 - ,- ,- ++ = F 1214-1m 2 - - - 11 = TRICHERO #15+17 :: →1:1:= 11=11-116m-60-111-1-10 :. + [n= I (MEM E) = (I (MEM = (+ SI (MEI) ~, 4.×11≈ लिज उग्रह 不多年7月(四分元)—3周十四元3年 (1) (4)(2) = (1) (2)(2) + (2)(1)(2)(2) 田田40年 T4=11 (tikla) + 18 (tikle) · ., ~, , = (TREATE) 科学学1 (中) 中 (的原用) . 4~ ·= 金鱼20= STONESS=13 8-4-8-11-2 THESE MEHICES I CHETS : 4 411= 【【】=《唐·神·明·日·日·【《胡萝芳》 GHHHH= 5 [(NF4)=11 90010= SI (NR1) =T4+T6 SI (NP3) =T4-T6 ាមា≟មា TIONESO = 15+17 90 H= 911411= SI(0667) = 15-17 SR (NR3) = SR3 9050= SR (NR5) = SR5 9060= 9070= SR (NR6) = SR6 9080=820 NBASE=NBASE+8 9090=830 NBASE=NBASE+NUUP2 9100=840 NRASE=NRASE+NLUP23 9110=1600 IF(NA.NE.16) RETURN 9120=0 9130=0 +++ 9140=0 THE FOLLOWING CODE IMPLEMENTS THE 16 POINT POST-WEAVE MODUL 9150=0 Ε 9160=0 9170=0 9180=0 NLUPS=18 + (NDS-NB) 9190= 9200= HUURE3#18 MIRE UNTB-ND) MBASE=1 9210= 988N= 100 1640 N4=1 NO 역원 원명를 [17] 1 m. - pr. 14 - = 1 a 146 4-411= មាល់ 1៩៤២ មាន≖1•មាត់ 4 - 50 = 1947年196日 1941 4 - - 1 - 5 1 - - = - - 1 + 1 45 635 110 2 = ++2+1 MP4=06-3+1 ១៩៩៣= 海巴里的岩 14441=1991 9300= 1+2911=3916 931 n= 14 8 8 1 1 1 1 1 1 1 9.320= MRR=MRT+1 编号的比赛 NF 유모인인(A+1 METHODAY 40465 11H 11=11H 111+1 935111= 9360= NR12=NR11+1 网络产用= MR13=MR12+1 938#= NF 14=HF 13+1 93911= NF15=NF14+1 9400= NR16=NR15+1 ``` ``` 741 h= 1964 1 2 = 1964 1 m. 6 1 Altras Factorials → → - 1:= ास्यास्य स्वास्त्र स्वास्त्रस्य स्वास्त्रस्य स्वास्त्रस्य स्वास्त्रस्य स्वास्त्रस्य स्वास्त्रस्य स्वास्त्रस्य 44 - 11= コイナリニ 李(B)P(P(P) + (李)(P $ $) 445bz 【1661年5月1月1日41日1日1日) ココー リニ 94.7H= 子(5)=《新月日新年》(1915年)) → 4 + 1 = 手(名) == | 1 (50mm) = 第 (10分尺) 1979年— 1 Dept + 300元79 44 4 HE T (名)=5尺(特积含)+5尺(的尺14) 海岛前州市 951 H= T (15) = (@ (N6) () - () () () () () () 1:19:==::::h#16:=:14:912: 4^{-}, \frac{1}{2} [1 \pm T((11) = 51)(\ThetaP10) + 31(\ThetaP12) 993.6= 9540= T (16)=38(9945)-38(9917) T(12) = SP(00011) + SP(00017) 9550= T (1) (1) = = 00 (2) ⊕ ⊕ (- 0) (3) ⊕ (⊕) 海馬馬伯= 9570= T(14) = -81 \text{ (MB16) } +81 \text{ (MB13)} 9580= SR(NR2) = I(5) + I(7) 9590= SR6 \approx T(5) - T(7) 9600= SR10=T(6)+T(8) 9610= SR (NR14) ±T (6) -T (8) 9620= O(7) = \Gamma(9) + \Gamma(10) 9630= 0(8) = T(9) - T(10) Q(1) = T(11) + T(12) 9640 = 9650= (S1)T-(11)T=(S)Q. \Omega(4) = T(14) + T(15) 9660= Q(5) = T(15) - T(14) 9670= 9680= D(3) = T(13) + T(16) 9690= 0.(6) = \Gamma(13) - \Gamma(16) 9700= SR(NR1) = 0.(3) + 0.(7) 9710= SR (NP7) =0 (7) -0 (3): 9720= 马爵身=0 + 8 + +6 + 6) 9730= SR(NR15) = 0.(8) + 0.(6) SR5=0(1)+0(4) 9740= 9750= $P3=0(4)-0(1) 9760= Ş⊬13=0(∂)+0(5) ាក្កកំព= 911=0 5 - - D - 3 : 9780= 479H= TROMPAGE FOR 海里到海岸 4-111= si(NKH3E)=}i(NM1)+si(NBA3E) 争治さり生 净浸 (4)= T(4)= 【(1452)(-3P(492)) 9840= T(3) = SI(MH2) + SR(MP3) 9856= 下(6)=3Ⅰ(164)=36(1665) T(5)=[T(NE4)+SE(NE5) 争多的现年 Tit 图 (三) 图 (] (44 日) (三) [() () () () 48.70± 丁(7)第7年7年(14年前)十八丁(19年7) 역권역하늘 9390= 1 (9)=51 (1465)+51 (18614) 99110= T(15) = SI(NEB) + SI(NE14) T(13)=5P(NP10)+5P(NP12) 9910= 9920= T(11) = SP(NP12) - SP(NP10) T(16) = (1) (1615) - (1) (1617) 9930= T(12) = SI(NR11) - SI(NR17) 9940= 9950= T(10) = SR(NR9) + SR(NR16) ``` ``` HARRIE]] (NHE) = [(5 + T + 7 + 7 + I : (140 H.) = [: 50 + = [: 7] लेके तैस≢ 4450= [] (B#16) = [(B) + [(F) 4 4 4 11 = 1:4-14:= (-.)-1(-) 1 00000= 沙・ア・=F・3・+F・10) \mathfrak{O} : \mathbb{R} \mathfrak{I} = \mathbb{T} : \mathfrak{I} : \mathbb{R} : -\mathbb{T} : \mathbb{I} : \mathfrak{I} : \mathfrak{I} 10010= 1.000\pm0= 9+11=T+11++T+12+ (2) (元) = T (11 (-T)15) 1្រំលិខិម= (0)(4)=T(14)+T(15) 10040= ា មិយទីលិ= 0.5/=1/15/-1/14/ 0(3)#[(13)+[(16) 10050= 10070= Q_1(g_1) = \Gamma_1(f_1) \cdot \Gamma_2(f_1) 1100≈0= SI (MR1) =01 (3) +01 (7) 71 \text{ (NP7)} = (0.7) - 0.03 10030= SI(MR9) = 0.(8) + 0.(6) 10100= SI (NA 15) =0 (3) -0 (5) 10110= 10120= SI(NP5) = 0(1) + 0(4) 10130= SI(N83) = 0(4) - 0(1) 10140= SI(NR13) = 0.(2) + 0.(5) 10150= SI(NR11) = 0.(5) - 0.(2) 10160= SI(NRS) = I(2) 10170= SI(NR4) = I(3) SI(NR12) = I(4) 10180= 10190= SR (NR3) = SR3 10200= 3R (NR5) = 5R5 10810= SR (内尼语)(中东尼语) 10880= SR (NP9) = SP9 SR (NR10) = SR10 10830= SR (NR11) = SR11 10240= 10250= SR (NP12) = SP12 SP (NP13) = SP13 1.036.0= HEHREHRH F+18 10870=1680 전달리 [M+무기유로서=유기유로서 10230=1630 इडेनिएयुग+३, सर्वन=३∛सर्वर 100 30=1540 10%06= RETURN ENU 10310= 10550=◆80€ 10330=◆EDF ``` # Appendix I. Computing the Prime Factor Algorithm (PFA) This program computes the DFT defined by: $$X(k) = \sum_{n=0}^{N-1} x(n) \exp(+j2\pi nk/N) ; k=0,1, ..., N-1$$ where the sequence length N is a product of the relative
prime factors from the set (2,3,4,5,7,8,9 and 16). This algorithm was proposed by Kolba and Parks in 1977 and was modified to the program presented here in 1980 by Burrus and Eschenbacher. Arguments. The PFA is called using the following arguments. N = The transform length which must be factored into mutually prime factors from the set 2,3,4,5,7,8 and 16. A list of acceptable sequence lengths is given in Table 3.11 - a,b. \mathbf{X} and \mathbf{Y} = The real and imaginary data arrays containing the sequence to be transformed. These arrays are dimensioned to length N. NI = The array containing the factors of N. If all four factors are not used the unused factors are set equal to 1. For example with N=30, we have NI(1)=5, NI(2)=3, NI(3)=2, and NI(4)=1. The factors of one must be the last of the M's. M = The number of nonunity factors. For N=30, M=3. UNSC = An output indexing constant which must be precomputed. UNSC = N/(NI(1) + ... + NI(M)). A and B = Data arrays of length N which contain the results of the DFT. The real part is in A and the imaginary part is in B. Usage. To compute the forward single-variate DFT: - (1) Dimension X, Y, A, and B to length N. - (2) Define N, M, and NI(4). - (3) Compute UNSC. - (4) Input the sequence to be transformed in x and y. - (5) Call PFA (X,Y,A,B,N,M,NI,UNSC). - (6) The Fourier transform results are located in A and B. ``` 了的我你们没有我们,你是我们,你不是,我不知识的,我也不能能够 1000= 110=: A PRIME FACTOR FRI PROFFAM 1200=1 100=0 ACOMPLEY THEAT DETA ARRAYS. REA, PATA IN 1 HARD 140=: IMAGINARY WAS DEC. IN V. 1500= -COMPLEY SUIRUT VECTORI. PRAL VALUE, IN A ABB 1 (-) (1=) H. B IMPRINARY VALUES IN A. 170=0 न वय त्रवारावय यय व्यवस्थ भ्र अभार- 1:00=: *,1 HASSOUSHOS LEMSTH WHICH MUCH PS SACIDABARUS 190=0 300=0 BY MUTUALLY PRIME NOS EROM THE SET (2.5.4.5.2.2.4.5.) -APPAY LENGTH M CONTAINING THE FACTORS OF M. 210=0 24 T 1014 117 HOMSCRAME, INC. COMPTANT BODGE, TO NAMIC (FRANCE OF F \mathcal{P}(P(t)=0) 230=0 240=0 250=0 PROGRAM BY C.S. BURRUS 250=0 PICE UNIVERSITY: AUG 1980 270=0 DIMENSION X (N) +Y (N) +A (N) +B (N) 280= 290= INTEGER NI (4) + I (16) + UNSC 300= DATA 831⋅ 832 / 0.8660254⋅ 0.5000000 / 310= DATA 051: 052 / 0.95105652: 1.5388418 / DATA 053.054 vn.38327128. 0.55901899/ 320= Data 055 330= ∠-1.25 ∠ 340= DATA 071. 072 / -1.18686867. 0.79015847 / 356= ₩ATA 673• 674 / 0.055854887• 0.7348088 / 360≈ DATA 075. 076 /0.44095855. 0.34087293 / 370= DATA 077• 078 / 0.53398936• 0.87484829 / 330= para car 20.70710678/ 390= DATA 092• 093 / 0.93969262• -0.17364818 / DBTA 094. 098 ∠0.78804444. -0.34202014 ∠ 400= DATA 097⋅ 098 / -0.98480775⋅ -0.64278761 / 410 = DATA (155, 1153 / 0.38268349, 1.30658297 4-11= DATA (1-4. (1555) n.5411981n. n.9252295 4 - 0 = 441.= 160 10 1=1•25 450E M1=M1+5 + 14.4 = 14 - 14 1 4.-1= 4:00 予部 点舟 沙=1+2+5+591 I_{i}(1) = 0 4)::n= 490= IT = I DO 30 (=8.84 566= 510= IT=IT+NE Fi@fi= IF (IT. 5T. H) 17=11-19 e ^ jie T () = T T 5 10 - 16 CONTRACT TRACE 5500= 55 iSran•102•103•104•105•a0•10.•108•109• 550= Ü 20.20.20.20.20.20.20.1160.81 570=0 WETA NES 580=0 594=0 ``` ``` T1=20010100 医乳蛋白蛋白 % (T (1)) = T1+×(1) (2)) . . ! ii= 化复合化二醇二甲基 T1=Y (1 (1 () ,- · ! ' = \forall x \mid f(x) : (=f(1+x)) \mid f(\mathcal{Z}) \mid f(x) .÷.419≈ V(r,\Gamma)(P)\mapsto (\pm T(1-r)\cdot\Gamma)(P)\cap J-18 18 # 30 78 30 .- Tr=. 加鲁丰富 的事品 -.:-, 11=1 \varphi_{i} = (-1)^{i} = (-1)^{i} 图★二:50日【金色》(1918年) 1918年 1918年 . . i : = 1 + . - 211±17+10800-8+108000 •681 210= P1=%([(8))+%([(8)) 720= 21=Y(I(P)(+Y(I(3)) 7 \ge 0 = TP=> (1 (1 () +P1 ♦8 3e 40= =۱۱،= ing=v(I(1)) = 11 +0 5c \times (\Gamma(1)) = \times (\Gamma(1)) + \otimes 1 780= Y(1(1))=Y(1(1))+S1 770= 780= \times (1(2)) = 12 + 01 790= X(I(3)) = T2 - 91 \Re (0) = Y(I(2))=92-T1 Y(T(3)) = U2 + T1 810= 60 TO 80 820= 830=0 META N=4 840=0 850=0 R1 = X(I(1)) + X(I(3)) 880=104 $2=X([(]))-X([:3)) ::70= \$1=Y(I(1))+Y(I(3)) 净集的= 完单用量 $2=Y([(1))-Y([(3)) を含素気(【(含))・*※(【(4)) \Box \cup \Box \cup \Box 910= \mathbb{R}4 = \times (\mathbb{T}(2)) - \times (\mathbb{T}(4)) 33=Y(1(2))+Y(1(4)) =(ا ئ- 930= $4=Y(I(2))-Y(I(4)) □ (3) I (1) (1) = (21 + (2) 3) 10 月 0 多 0 4 = 5 1 - 5 3 Y (1 (1) (= (1 + 1)) p+\frac{1}{2}(p+2k+\frac{1}{2})\frac{1}{2}+\frac{k+2}{2} 41-64-64 + [+ 4 + + = + + -] 4 字(I・ピ)・= * と - 84 10000 Y (] (4 () = ?∂+₽4 1010= 30 TO 20[™] 119-11# $ 10 mm = 5 1040=0 06TA N=5 1.05 0.51 51=10(1)20(+1)(1)50(11 × 11 = 14 % 50日 - 1 (c) (- 三 (I (写)) 1 1:0- 11= ス1=Y(I(≥)(+Y)I(5)) (2=1) [(2:0-Y)] [:50) 100-1- &3=% (1 (3)) +% (1 (4)) 1100= 1110= 94=2([+3))-2([+4)) ``` ``` * 11:50= OREGITA YOU +VOIT (4) (74=7-11-7-1-1-1-4-1 11-11= < ! 14 n= 11=(6:+6:4) *: 5:1 311±172+ 41•6551 1120= 多名类工作 - 原名 • 约图台 ਰ≋1:1- ਰ•1 ਉ∂ 11 = 94=11-94+053 1150= 14≈(4) - 14♦(15) 1190= T_1 = (\{e_1\}, \{e_2\}, \{e_4\}, \{e_4\}) 1,-1.11= 1:11= 191=+ 11 ~ 근 + 회 등4 1880= TB=81+87 1200= 11/2=51 +53 1840= の (1) キャリ無さり [(1) チャキ手記 1250= 7 ([1]) 10 (#Y) [1] (1) (#D& T2=×(I)1))+T2+0555 12311= 化溶血管 医手术大学的 电线线 电自局局 1220= 手1世下記を下す ≕افئ 1290= 23≈[2-[1 1300= S1≈U2+U1 1310= 23=92-91 1320= X(1(2)) = 21 + 34 1330= \times (1.(5)) = 81 - 84 Y(1(2)) = S1 - R4 1340= 1350= Y(1)(5)) = $1+84 X(I(3))=R3-S2 1360= X(I(4))=R3+S8 1370= Y(J(3))=53+88 1380= Y(I(4)) = 93-82 1390= 1400= 50 TO 20 1410=0 1420=0 META N=7 1430=0 第1年X(I(E))+X(I(F)) 1440=107 P2=Y(T(2)+-X(T(7)) 1450= 1486= S1=Y(1/2))+Y(1/7)) 1470= ??=Y+! (?)) -Y+! (?)) RR=>+1+3++×+1+6++ 1490= 54= (1) (1) (1) = (1) (1) (2) (3) 1.4500 # 1500= B#3 6 f f + + + + + + f + m + 5 74=10 to Fra = 0 0 to Fa 15111= • - - 多色量 (人) (4.4) (4.4) (4.5) (音) 15/10= S5=Y+1(4))+Y+1(5)/ 1540= 15511= "a=9 (I (4 () -10 (I (5)) 1500= T1=51+69+65 1570= 111=11+13+15 1580= ※(I)1() #2(I)1(1) +F1 16-41- 1. 1. 22 1-10= (i)1=x + [+1 + ++()1 +()] 1 1880= T2=(72++21-25) 15.384= U2=072++51-55) 1640= T3=073+(85-83) ``` ``` 1 - 500= 1995±029•1355±195 T4=: (4 • (4) -F1) 15.50= 1.- . 11= 194=074 • + - 2 − 21 + 1.554 = アナニエナ・エス・エラ 1.- >- (1 = $3=11-12-T4 1000= F5=11-T3+T4 1710= [] =[i] +(i=+1)[1720= P=1(1-04)-04 1.30= 5 = [3] - [3] +1 -4 (2) 無信置数● (2) (2 ★ 2 4 ★ 2 6) 1740= 1750= T1=075♦+R8+R4+R3+ 1.74.H= 丁丹=月了名★(伊伊米伊东) 1220= 148年67日本(日本)前人 TB=027++94+96+ 1780= 1790= 103=0.77 • ($4+$5) 1860= T4=078 + 184 - 88 ± * :- ! ! = ಸ್ವತ=1 78•194-1€1 1820= R2=T1+T2+T3 1830= R4=T1-T2-T4 1840= R6=T1-T3+T4 1850= $2=01+02+03 1880= $4=01-02-04 1870= $6=U1-03+U4 1880= \times (I(2)) = R1 + S2 1890= X(I(7))=P1-S2 1900= Y(I(2))=S1-P2 1910= Y(I(7)) = S1 + RR 1920= X(I(3)) = R3 + S4 1930= X(I(A))=R3-54 1940= Y(I(3))=$3-24 1950= Y([(6))=$3+R4 1960= X (1 (4)) = 25 - 56 1970= X(I(5))≠R5+38 1986= Y ([(4)) = 25+PA 1990= Y(I(5)) = 55-86 =0.000= SO TO SO 2010=0 是中部企业。 排除手指 (See) 20 31 =: .- 1.4 h=1 n€. 原 1 = 。(下・1・・★)(下・5・・ 012 = 10100-0100 g^*(D)g_*(t) =]=x+}+1+++4+1+5+ 2070= 38=Y+1(1)+-Y(1(5)) #3=2 ([+2+++>+|-+|+6++ ∂ 11:- 11= हाभिभा≕ 24=8+[+2++->+|+0+| BB=Y+1+8+++++1+8++ 2100± 34=Y ([(&)) -Y ([(&)) ∂110= e 1∂ n= F5=1 + 1 + 5 + + + 1 + f + 7 + + 21 201= Part = 1 (E) Pirit = 1 (E) più i 2140= 55=Y+J+3+++++7+7+) 2150= 28=8717200-8717200 2160= 87=X(I(4))+X(I(6)) ``` ``` 3171 = (學是主) (4.19) 4.19(三) (4.19) (4.19) a 1 = 0 = op man e de la magneta de la del france de la composición de la composición de la composición de la composición - 1500 = \tilde{\mathcal{H}} \equiv \tilde{\mathcal{A}} + \tilde{\mathcal{ e e1th≡ S - 11 = A_{i,m}(A_{i,l}) \approx 111=11+16 J= 1-75 or⊋n te 1 = % - * (* 1) . .- 4 + == 2-2 = 11 = F = + F = + F (+ •) ,] 00 10 a Partie 10克量(10克克·西方金) \sigma'\sigma' \in \mathbb{N} = 74=84-88 हेहें भार 图4年48年466(新月四月 E 31111= 1.4=14-15 1 i = 4=()4+(3)+(5) - - 10m = ±:• < •;• • æ330≈ T6=83-83 2340≈ U5=32+33 2350≈ 98=88-89 2360= T7=84+86 2370≈ T8=84-86 2380≈ U7=04+98 2390= U8=$4+$6 2400= X(I(1)) = I1 + I3 2410= X(I(5)) = I1 - I3 ∂4∂0= Y ([(1)) =01+03 2430≈ Y(I(5)) = 01 - 03 2440≈ 27 【702) / 申15 407 ∂45#± 801(80) = 15-97 34≲0= Y(1(3))=65-17 3470≈ アバモ(多・) =55+17 8450= 7 (I) 3 () = F2+04 M(1(7))=T8-04 2490€ 2500= ₹(1(?)) =U2-T4 2510± MCT (7)) =UE+T4 2000年 2017年4年(三丁清末出版 (x,y,y,z,z) = \mathbb{Z}[x,z-z]. 35.411= 1 - 1 - 4 - - 1 - - 1 (4) ے ، عال or Table + ±the 4 co e = : n = ; ಿ580=೧ META NEW 适与特色。 84=8 (1 (2) (+) (1 (4)) 8800=109 c \sim 1.0 = [宋帝章] 《【《宋》《宋·《宋·》《【《海》》 \mathbb{T}(1=i) \cdot \mathbf{I}(1=i) \cdot \mathbf{r} + i \cdot \mathbf{r} \cdot \mathbf{r} + 2 \cdot i 8080 60-112 المارة والإسلام - 4) = 2656= P4=(<+] + <+++> + [+ (≥++ □ R=Y+T+Ree+Y+T+Ree \mathcal{D} \in \mathcal{A}(D_{+}) [4=Y+] + 3++-Y+] +8++ ∂470± $5=2(1(4))+2(1(7)) enskin= ``` ``` \mathbb{T} = \{ \{ \{ \{ \} \} \mid \{ \{ \} \in \mathbb{N} \mid \{ \{ \} \in \mathbb{N} \mid \mid \{ \} \in \mathbb{N} \mid \{ \} \in \mathbb{N} ्ट के कि E = - 宇宙なりより乗りがあります。かり さいわりき 1 1 ~ (名字章) はずすちらり 4点 すずり高りが 1 === 海海岩 化氯化酚 化二氯化氯化酚 7月47日(50) #7日(50) - 746= € 75 + 2 TV 电极图 1 (氧) (三) (1) (4) ,- , ,- 1 4E = دا 'رانی 1 + = いきゅうしょうきょう ちゃってき 750 = (f):/= ($ a + (c) () (• b) (+ ∂ c ≥ 1 + 11 = රාළ= (3)}−(2)•09ිළ 871 n= 13年(第1 -87) ●593 ±11€ جانے T= T1- T+•095 $#4= + <1 +3 3 + ●€ 94 ಕಚಿತ್ರಗ≔ 810=81+83+87 2860= 710=91+53+87 2870= 2880= R1=T1+T2+T4 RS=T1-T2-T3 2890= 2900= P7=T1+T3-T4 2910= 81=01+02+04 2920= $3=01-02-03 2930= 37=01+03-04 X(I(1))=P9+P10 294 n= V(I(1))=59+510 2950= 多男主配件=配件的●原形品 = ۱۱ جائزانی 35=39+110•832 2970= 多海绵的= PS=-+P2-P4+P8/●531 29411= ੋਲਵ=ਮਾਂਕੋ=14+199+•1731 T2= (84+88 (●098 3000= (1)20年(7.4★79年)◆896 7010= T3=+R2-R8+•897 3020= មទៀ⊞មក្នុងក្រុមស្គាល់ "万字道士 (제4±) 연구+당4 (◆11 H원 2040= <u>- , -</u> 4±0 0 € 4 0 € 45 5--1-1--14 3 h.- r·≠ • 4= 1 - 1,2 - 1 TP=11+11-1+114 201911= 7.4=(1-(1)2-(1)3 3100= H=1+1+2+1+4 3111 11 (1 (원) (#동네는) 본 2120= 3130= 10 1 0 4 0 0 ± 5 1 + 1 c 3 (1)2()= 1+62 >1.4 (1) ± 151 = + 1 + + + 1 1 - 1 - ソ・【・氏・・=原子-14 217 n= 7190i= 9-11-3-1- 3-54 Y(I(8))=,3+84 31411= 3200= ※ (1 (4)) = 25-5% ``` ``` 3210= 化工作工具工作 电电路 £ 6 (i ± 化化工业 医多种生物医多种 \mathcal{I} = 0.02 (2) 105 () = 27-18 PP40= = ۱,۵- コインタット 生物でもごろ 化分子 医二十二氏 医二乙酰胺 \mathbb{R}PAB= 3270= 学・「4名・4年 リー第8 1 SB TB 26 \mathbb{R}_{+}(\mathbb{R}^{n}) = BB 每 0 ± 0 ាទិសម=: 45-15- N=16- 3510=0 3380=115 $e1 => + 1 + 1 + 1 + 1 + 9 + + 多分分的主 3340= § t = 5 € [+ 1 + + 2 +] + 1 + 2 + 3 3350=
28=841(4))-841(9)) 3356≠ 23=×({(2))+×({(10)) < 3.7 n= $4=0 (1(2)) - (1(10)) > ≥=5 ([) = () + () [] (100) 333:11= 34=Y(I(2))-Y(I(10)) 3390= 25=X([(3))+X([(11)) 3400= 3410= R6 = X(I(3)) - X(I(11)) S5=Y(I(3))+Y(I(11)) 3420= S6=Y(I(3))-Y(I(11)) 3430= P7=X(I(4))+X(I(12)) 3440= 3450≈ R8=X(I(4))-X(I(12)) S7=Y(I(4))+Y(I(12)) 348.0= 3470= $8=Y(I(4))-Y(I(12)) R9=X(I(5))+X(I(13)) 3480= 3490= P10=X(I(5))-X(I(13)) 3500= 39=Y/1/5//+Y/1/13)) 3510= 510=Y(I(5))-Y(I(13)) 3520= 211=2(1(6))+2(1(14)) 多元多的= 818=X+I+6()-2+I+14+) 3540= $11=Y(I(8))+Y(I(14)) 3550= $12=Y(I(3))-Y(I(14)) 3540= ¥13≠×(I(7))+×(I(15)) 第14年20日 (700年)(1711年5月) 3570= 13±9-1-73-49-11-15-3 医骶线 鱼鱼 14=1-11700-1-150 355mm= 345=143000 A A OF 184 A A 7 4 10 ft ± 100 ... 1155 (116) (5) (5) I (16) 3.5.341 = 下午=1000年 3.4.4 ## 3850= 72=81-84 111=11+19 ித்தவி= 118=11-14 3-70= 77=97+911 医子宫病毒 * 1-5 * LG 1 4 3,100= 0.5=5.5+111 04=83-811 3710= T5=R5+R13 3720= ``` ``` T第三角与4角1分 3730= 自由电话 医乳色质 1.74 0 = Object to the second of the 5 75 6 5 17=97+915 373.6= :7.7 h= 지원 모든 김 씨를 하면 172=171+115 3,79 O= (min=0,7-5,1.5) 含含净用丰) T9=(8(•)T4+T3) 乳乳 角形羊 T | 10=0 @| | ◆ | T | 4 = T | 6 | + 59.1 N= 1995年6月★(1944年18) \mathbb{R}[2] \geq 0 \pm 111 0±081 • (14+16) 3830 = 21=T1+T5 ③846= 9-3-11-TS 复运车 的复 1=(11+1)5 3665.6 \pm 3870= 93=111-05 3880 = 25=T3+T7 97=13-TF \mathbb{R}(\mathbb{R}^{n+1}):= ್ರವಿ=ಟ್ರ∞+ಟ್? 39444= $7=03-07 3910= 89=T2+T10 3920= 211=T2-T10 3930= 9=02+010 3940= S11=02-010 3950= R13=T6+T9 3960= R15=T6-T9 3970= $13=06+09 3980= 3990= $15±06-09 T1=84+818 4000= 4010= T2=84-816 01 = 84 + 516 4020= 92=84-816 4030= T3=081 + (R6+R14) 4646= 4050= T4=091 ◆ + RH-R14) #3=081 • ($6+$14) 4.08.0= (14=081 € ($8-$14) 4670= T5=88+818 4080= 4/19/16= TB=98-918 145=124712 41 mu= the section that 41111= TT=1 (And •) TE-To-1 4121= \lceil \lceil \lceil \frac{1}{2} \rceil \rceil \cdot \lceil \frac{1}{2} \frac{1}{2 41 - 11= A - 1 - 4 - 1 - 17 414. = T10=62+T4 4150= T11=92-T4 41:41= 4170= 學過二丁10+丁含 (24=T10-T⊝ 418 h= PS=T11+T9 4190= @9≂T11-79 42 Ph= 4,71 = July * 1 - 11. (18年11日本3●11日末日) 40011= (19≈0164 •06 −07 4230= U10=32+U4 4640= ``` ĥ ``` 125 11= 141 1 = 12 = 14 1, 1 1 2 1 m. 10 c. 1, 1, - Tel=1111+159 コンドリコ .a.s. (1-6.7) 4, 541.4 TT=(**,€◆+{1+T气+ 4 1001:= TRETT-: 154+T1 4310= 19=17-00-18-19 47,-11= 47 1. = T 1 1 = 1 1 1 1 = T 1 1:350 Pin=Tin+TS 1:50= 1016=110-16 4 30011= 7-14=111+TP A 1 1155 -10=T11-TA 1 3911= (河南)1656年(()) 科历() 4990= 108=07-0164+01 4400= 5 海淋红 医甲氏性病多垂肠管 441 N= $11.0=5.10 to 5 44211= 1011=810-03 4430= 910=010+08 44411= $12=010-08 4450= $14=011+09 4460= 816=011-09 4470= X([(1)) = 81 + 85 4480= \chi((9)) = 81 - 85 4490= Y(1(1)) = S1 + S5 4500= Y([(9))=$1-$5 4510= X(I(8))=82+$10 4520= X(I(18))≈P2-S10 4530= Y:1(2))=$2-810 4540= Y(T(16))=$2+810 4550= 81[131]=R9+813 4580= 0.4 T (15 t) #P9-010 450 N= Y/1(3))=59-813 4580= V/I(15))=59+₽13 4590= ×([(4))=P8-S16 48.00= (1) (1) (1) (4) (1) 無序総+3 (1) 4-111= , - T - 4 - 1 = 1 5 + 4 1 # 1 - - 1. = , () (14) (= 5-5-16) 4.- 11:= 1 : = : : = : T 1. 4. = 1 717 - 1 m ---- 1 - 1 - - 1 - - 1 <u>ئند</u> راه رات جو چو Y (1 (13) (#33+87 48 211= 1 (T) (A) () =Em+*14 4.550# p(1)(18))=88-114 4890= $ (T)(a) (=16-614) 4700= 学(1)(1治()=>治+814 4710= 07:7:1=5:11=7:15 1 0 = 1 + 1 1 + 1 = 1 + 1 + 1 + 1 = 11 1 mg Y (1 (7)) = (11+815 4/411= Y(T(11))=811-815 4750= X(I(8)) = R4 - S12 4780= ``` ``` 4770 \approx 4780≈ M(T(8))=84+818 4790≃ \ell: \Gamma: \Gamma: 0.000 = 14 - 5.16 SE TE SH 45 前前電 4910≈∂0 CONTINUE 4820≈10 BUMITMOS 4830≈0 424 ñ=f INCIDENTE INC 48500≈0 4860≈ L=1 4870≈ DO 2 K=1.N 4880≈ A(k) = \chi(L) 4890= B(k) = Y(\xi_i) 4900= L=L+UNSC 4910= IF(L.ST.N) L=L-N 4920≈ IF(L.GT.N) L=L-N 4930≈2 CONTINUE 4940≈ RETURN 4950≈ END 4980ťEOR 4970ť88F ``` ## Appendix J. Timing Tests on the CDC Cyber 74 The timing tests on the CDC Cyber 74 used the FORTRAN command SECOND(CP) which, according to the FORTRAN IV reference manual, returns time accurate to "two decimal places", i.e., 0.01 seconds. The results of timing the various DFT algorithms showed this clock was accurate to three decimal places (0.001 seconds) giving a time resolution of 0.002 seconds. Using three decimal places was justified since almost every standard deviation was less than or equal to 0.002 seconds. To verify the premise that counting the real operations performed in a DFT is the primary factor determining execution speed of the algorithm on a computer, the DFT execution times were measured on the CDC Cyber 74. The execution speeds for the WFTA, PFA, and the mixed/fixed radix FFTs were compared to the "predicted" execution speed of the algorithm. To perform these comparisons the multiply and add speeds were determined for the Cyber 74 computer. The execution times of the floating point multiply and add instructions are given in the CDC 6000 Series Computer Systems Reference Manual. The execution times for several instructions are listed below and include preparing the next instruction for execution: | Instruction | Assembly
Language | Minor
Cycles | |------------------|--------------------------|-----------------| | Floating sum | FX _i | 4 | | Floating product | $\mathtt{fx}_\mathtt{i}$ | 10 | | Normalize result | $NX_{\mathbf{i}}$ | 4 | | Fetch/store | SA _i | 3 | where one minor cycle equals 0.1 microsecond (µs). Simply using an add time of 4*0.1µs and a multiply time of 10*0.1µs = 1µs is not sufficient because the operands must be fetched and stored which adds more time. To determine the commands executed by the computer for adds and multiplies the assembly (COMPASS) language was studied and timed for three cases. First, the DO loop with no operations was executed 100,000 times: DO $$102 J = 1,N$$ #### 102 CONTINUE The associated COMPASS language code was listed as an output of the program: | (AA | BSS | ОВ | |-----|-----|---------| | | SBO | B2 + 7B | | | SA5 | J | | | SA4 | N | | | SX7 | X5 + 1B | | | IXO | x4 - x7 | | | SA7 | A5 | | • | PL | X5, (AA | This loop required an average of 2.70;88 (standard deviation 0.03µs) to execute. Next the addition instruction was executed 100,000 times using the FORTRAN code: DO 102 $$J = 1, N$$ 102 TAD = A + B The associated COMPASS code for the addition loop is: | (AA | BSS | ОВ | |-----|-----|---------| | | SBO | B2 + 7B | | | SA5 | A | | | SA4 | В | | | SA3 | J | | | SA2 | N | | | FXO | X4 + X5 | | | NX7 | во, хо | | | SX6 | X3 + 1B | | | IX5 | X2 - X6 | | | SA6 | A3 | | | SA7 | TAD | | | PL | X5, (AA | This add loop required an average of $3.34\mu s$ (standard deviation $0.3\mu s$) to execute. Notice the "extra" instructions of the add loop versus the no operation loop: | Comm | annd | Minor Cycles | |------|---------|--------------| | SA5 | Λ | 3 | | SA4 | В | 3 | | FXO | x4 + x5 | 3 | | NX7 | BO, XO | 4 | | SA7 | TAD | _3 | | | | 17 | Finally the multiply loop was executed 100,000 times. The FORTRAN code is: DO 102 $$J = 1, N$$ 102 TAD = A*B and the corresponding COMPASS code loop is: |) AA | BSS | OB | |------|-----|---------| | | SBO | B2 + 7B | | | SA5 | В | | | SA4 | A | | | SA3 | J | | | SA2 | N | | | FX7 | X4*X5 | | | SX6 | X3 + 1B | | | IXO | x2 - x6 | | | SA6 | A3 | | | SA7 | TAD | | | PL | X5,)AA | The multiply loop averaged $3.37\mu s$ (standard deviation 0.03) to execute. The extra instructions required for the multiply loop relative to the no operation loop are: | Comm | and | Minor Cycles | |------|---------|--------------| | SA5 | ß | 3 | | SA4 | A | 3 | | FX7 | X4 * X5 | 10 | | SA7 | TAD | _3 | | | | 19 | Comparing the measured execution times of the three loops shows the add loop is 0.64µs longer. Based on the minor cycle times for the extra add and multiply commands, the add loop should be 17*0.1µs longer and the multiply loop should be 19*0.1µs = 1.9µs longer than the "no operation" loop. (Notice that every floating point addition must be "normalized" by the command NX7 which requires 4 minor cycles. The floating point sum does not require normalization). The difference in measured add and multiply speed (0.64µs and 0.67µs) versus the predicted add and multiply speed (1.7µs and 1.9µs) is a result of the very short loops fitting inside the Cyber's "instruction/execution stack" which is a 12 word stack with 60 bits per word. Since the entire loop could fit in the stack the instructions were fetched only once instead of 100,000 times, whereas "all execution times (minor cycles) listed include readying the next instruction for execution". During normal DFT algorithm execution of all of the instructions must be fetched which means the add speed is 1.7µs and the multiply speed is 1.9µs. These numbers were then used to predict execution speed of the DFT algorithms. ### Vita John David Blanken was born on 18 April 1953 in Junction City, Kansas. He graduated from Junction City High School in 1971 and attended Kansas State University from which he received a Bachelor of Science in Electrical Engineering in May 1975. Upon graduation, he was designated an AFROTC distinguished graduate and received a commission in the United States Air Force. He entered active duty 15 July 1975 and was assigned to the Air Force Avionics Laboratory at Wright-Patterson Air Force Base, Ohio. On June 6, 1979 he was assigned to the School of Engineering, Air Force Institute of Technology. Permanent Address: 716 West 8th Street Junction City, Kansas 66441 | k , m = with a flex birth 2000. | THE PROPERTY OF O |
--|--| | AD-A100 7 | 732 - 1 | | ritte in equition of the feet the number of the following in the court of | MS Whorles | | T = E(t, t) = E(t, t) | B. CONTRACT OH GRANT NOVER | | John P. Blanker, Captain, USAF | | | Air Forde Fratitute of Technology (AFIT-
Wright-Patterson Af5, Onio 45433 | DE PROGRAMMENT DESTRUCTION OF THE AREA & NUMBER UNIT NEWS | | 11. CONTRACTOR OF FRANCE ME AND ALLHOUS | W REFLIT DATE | | AFC// IT/TH
Wright-Patterson AFB, Ohio 45453 | December 1980 | | 14 MODEL OF THE VIEW YEARS OF TITEMEN OF THE THE WORLD FOR THE COME WHEN | | | | Unclassified EU, DECLASSIFICATION DOWNSHACING SCHEDULE | | 16. DISTRUCTION STATES, STREET HIS Reports | | | Approved for public release; distribution | n unlimited | | 17. Ph. 7 · Con (1904-57 / TEV) N. Confide above, it entered in Plock 29, at difference t | (ton: Report) | | 18. Seferi Brit, W. Arry Model | anterior e la companie approprie de la transportación de la companie de la companie de la companie de la compa | | Approved for public release; IAW AFR 190-
Freds for C. Lyson, Major, USAF
Director of Fablic Affairs | -17 Ayhan HODEN | | (b) (k) (a) (b) (b) (b) (c) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | 77) | | Fast Provier Transform Directle Fortier Transform Winegrad Patrica Transform | | | A contributive comparison of the rant of Team Process (1927) techniques is presented, solved by the Vision of the rant of the Part Pourier radio (1927), the Winocrad Pennier Transform the still rates Atsocithm (1927). Comparison to the order of the number of real multiplier receives trapped as a function of second at the time, as the time of the | ficient Discrete Fourier The DFT algorithms Transform (FCT), mixed Jagorithm (WFTA), and ison of the algorithms tions, additions, aschemence length N. This | | 1) v | nclassitied | Unclossified The construction of the construction #### 20. Abstrace (Continued) Find the process and advances of the control of the reason of the control District Colored States States